Category Archives: Water Resources

Healthy Waters Coalition – What’s on Our Minds, In Our Hearts

At my Healthy Waters Coalition meeting tonight, where we discussed the value of accurate, balanced information about oil spill prevention, I accidentally spilled pink lemonade across the agenda.  (From now on, the incident will be remembered as the “pink spill,” and it can be added to a long list of funny things I have done while leading coalition meetings.) I began to think about what’s really motivating our efforts to inform and educate Sebago Lakes Region citizens and local businesses about watershed issues.

We are a water-based economy here in this part of southern Maine. Boat rentals and recreation-based businesses, real estate and restaurants, florists and landscaping contractors, summer camps for children and accommodations (think: Inn by the Pond), not to mention waterfront property in towns–and property taxes paid to Towns–all bring in millions of dollars in annual revenue for the Sebago Lakes Region. The State of Maine tracks the annual revenue for freshwater fishing and accommodations for several Lakes Region towns. Wetlands are valued for their ecological services, too, and that translates to dollars. Real dollars. Wetlands attenuate flooding and aid in filtering waters to provide good water quality in our groundwater, which produces the drinking water for those who have private wells.  All of the headwater streams (94-100% of streams) in the region are located in Source Water Protection Areas (SPAs), meaning that they directly feed into a public drinking water system. In our region, that system is Sebago Lake, which is so clean, it’s exempt from the federal filtration requirement, an expensive option if ever it were to become necessary for the Portland Water District to put in place.

I want to reach out to other groups engaged in an open dialogue about the possible transportation of oil sands through New England and the importance of protecting our local watersheds, local economy–as the two are interconnected.  While the HWC already has members in 8 Lakes Region towns, representatives from local government boards and committees, watershed organizations, local businesses and other interests, such as Saint Joseph’s College, and we have partnered with some fantastic environmental and conservation-oriented nonprofit organizations already, I’d like to connect the Healthy Waters Coalition with a broader network.  I’m interested in connecting with folks at ConservAmerica, town and city revitalization committees, regional Chambers of Commerce, and the business community. We have so much invested in our waters. While pondering this, I scribbled some thoughts and turned it into this info-graphic (below). I like how it came out. Let me know what you think.

HWC_wordle3

The State(s) of Sea Level Rise Science

Peaks Island, Maine

Peaks Island, Maine

In early April, I read an issue of a Peaks Island, Maine newspaper. On the front page, a story’s headline caught my eye:  “Sea level rise not caused by climate change, scientists confirm.” At first I assumed it was an April Fool’s joke, but the date was not April 1st. Then I got upset. I read. It seems that the journalist had (mis)interpreted a report on sea levels in Casco Bay that affirmed the sea level has risen for much longer than most people have known about global climate change. In fact, the State of Maine has over 100 years worth of sea level rise data because the City of Portland has tracked sea level in Portland harbor since 1901. That’s valuable data. The University of Southern Maine has conducted a series of studies on sea level rise, sustainability and the economics involved with planning for adaptation. According to the Environmental Finance Center at the Muskie School (USM), “at least 100 coastal New England towns will be impacted by sea level rise and increased storm surge from climate change.” Read about their COAST and Climate Ready Estuary projects here.

The State of Maine published its climate change action plan in 2004. It identified sea level rise adaptation planning as a necessity. In particular, the Maine Geological Survey conducted several pilot projects that assessed coastal wetland migration. The state’s coastal zoning laws and management practices changed several years ago to reflect sea level rise. Read the 2010 report, “People and Nature: Adapting to a Changing Climate, Charting Maine’s Course.” A great list of collaborators contributed to the development of “People and Nature,” including Natural Resources Council of Maine, several state agencies, several cities and Maine Coast Heritage Trust. It’s hard to find on the state’s website because the State Planning Office’s website was moved and merged with those of other departments.

Meanwhile, adaptation planning has moved to the forefront of climate change science in recent years. Sea level rise scientists at NASA, USGS and other agencies engaged in an online chat session about the state of the science for sea level rise and adaptation planning in early April 2013. (You can listen to the discussion after-the-fact.) What I found interesting is that salt marsh ecology and wetlands play such a vital role in our understanding of sea level rise and its implications for coastal systems. Over the past 6 years, I’ve done some research on sea level rise and learned of sea level rise tools and adaptation planning efforts underway all over the country. A hotspot for sea level rise research is the East coast of the United States, where sea level rise is occurring at a faster rate between Cape Cod and the coast of North Carolina—faster than anywhere else in the world.

Leah Stetson photo

Leah Stetson photo

Several other states have begun to plan for sea level rise. Click on the links below to learn more about what states are doing about sea level rise and adapting natural resource management strategies for climate change. In most cases, it’s a collaborative effort.

MA: Mass Fish & Game Adaptation Planning       MA sea level rise planning maps
MA: Climate Change Adaptation Advisory Committee
NY: New York Sea Level Rise Planning        NY Sea Level Rise Task Force Report 2010
CT: Connecticut Climate Change Adaptation Reports
RI: Rhode Island Coastal Resources Management Council Sea Level Rise Planning
NJ: New Jersey Coastal Management Program Sea Level Rise Planning
NJ: Sea Level Rise in New Jersey, New Jersey Geological Survey Report, 1998
NJ, DE, PA, NY: Delaware River Basin Commission Climate Change Hydrology Report, 2013
DE: Delaware Sea Level Rise Planning & Adaptation
MD: Living Shorelines Program (Chesapeake Bay Trust)
MD: A Sea Level Response Strategy for Maryland (2000)
VA: Planning for Sea Level Rise, Virginia Institute for Marine Science
VA Sea Level Rise Maps
VA: Sea Level Rise Planning at Local Government Level in Virginia
VA: Government Plan for Development of Land Vulnerable to Sea Level Rise
GA: University of Georgia, Sea Grant – Sea Level Rise Planning & Research
FL: Florida’s Resilient Coasts: State Policy Framework for Adaptation (PDF)
FL: Multidisciplinary Review of Current Sea Level Rise Research in Florida  (University of Florida)
MS & AL: Mississippi and Alabama Sea Grant Consortium – Resilience in Coastal Communities
Gulf of Mexico States: Climate Community of Practice: Sea Level Rise Planning
LA: Coastal Protection & Restoration – Recommendations for Sea Level Rise Planning (Includes Louisiana’s 2012 Coastal Master Plan)
CA: California’s Climate Change Adaptation Plan for Water Resources (2012)
CA: State Resources on Sea Level Rise and Adaptation Planning
CA: Adapting to Sea Level Rise Report (2012)
CA, OR, WA: Sea-Level Rise for the Coasts of California, Oregon and Washington (2012)
OR: A Strategy for Adapting to Impacts of Climate Change on the Oregon Coast (2009)
OR: LiDAR Sea Level Rise Research (NOAA Digital Services)
WA: Addressing Sea Level Rise in Shoreline Master Programs (Guidance) (2007)
WA: Sea Level Rise Assessment: Impacts of Climate Change on the Coast (2007)
AK: Alaska’s Melting Permafrost and Melting Sea Ice (national research)
AK: Climate change impacts in Alaska (EPA)
NC: North Carolina Coastal Federation – Sea Level Rise

A note about North Carolina: Several state agencies, including the Departments of Environment & Natural Resources, Transportation and Commerce, all identified threats and risks from sea level rise in 2010. At the time, the state’s Governor signed a letter confirming this. Two years later, North Carolina’s State Senate passed a law that banned sea level rise adaptation planning based on the current science. The House of Representatives rejected the bill, but a compromised version of the bill called for a new study on sea level rise for North Carolina and a ban on exponential sea level rise predictions in modeling. Read this Scientific American article on NC and sea level rise, and the 2012 USGS study that found increasing sea level rise impacts on the coast between Cape Cod and the Carolinas. See “More unwanted national attention for North Carolina on sea level rise” (2013).

If you’re interested in a good summary of sea level rise policy in states, see this 2012 legislative report by Kristin Miller, et. al. (Connecticut General Assembly). It includes an analysis of sea level rise related policy in ten states (Louisiana, Florida, Maryland, Massachusetts, New Jersey, New York, North Carolina, Rhode Island, South Carolina and Virginia.)

Update: Check out Nickolay Lamm’s Sea Level Rise Images Depict What U.S. Cities Could Look Like In Future (PHOTOS) – click here. 

Convergence: Where Streams & Stories Connect

Eighteen years ago, my brother and I eloped with our mother to Kaua’i. I say “eloped” because the trip was a romantic surprise after my step-dad proposed over the phone. He was already there—on Kaua’i. It was February, 1995, my senior year of high school, and the end of February school vacation. I turned 18 during the 23 hour plane ride to the Big Island of Hawai’i. My parents—my mother and step-dad, married at the point of convergence, where two streams met before emptying into the Pacific. Waterfalls peeled like tropical fruit through the rainforest. Two fed these streams. Neither my brother nor I had ever experienced swimming in the Pacific Ocean, let alone kayaking through a jungle. One day we hiked to a massive 40-foot waterfall, which we learned had been featured in one of the King Kong movies. I slipped behind the falls into a cave, sprayed by its awesome force. Those streams created our new family.

Flash forward to 2013:  A small perennial stream meanders through my black ash seep, past a vernal pool and flows into the pond. It’s not dramatic. It’s barely audible. The nor’easter that took everyone on the East coast by surprise yesterday dropped over a foot of snow. It’s that light fluffy stuff perfect for a snowshoe hike. Everything’s quiet, cold and white. Yet the stream trickles, melting the snow on either side. It persists. This stream is one of many, many streams in Maine that flow either perennially, intermittently or ephemerally—that is, after storms. Streams criss-cross and converge, form major tributaries like Panther Run, feed creeks and rivers, such as the Crooked River, emptying into lakes, picturesque waters such as Panther Pond, and wetlands throughout the Sebago Lakes Region of southern Maine. Most of the residents in this region depend on the groundwater for their drinking water. Those residents in the Portland Water District get their drinking water from Sebago Lake. Either way, the streams that flow and converge throughout the state—even beyond this watershed—play an integral part of life as we know it.

In thinking about the importance of headwater streams, it’s useful to see streams in a larger watershed context. The U.S. Environmental Protection Agency (EPA) has launched a great online tool with a headwater stream index for the entire United States. Maps showing stream data are available for 48 states (Alaska and Hawai’i are not available at the time of this post). EPA has published the summaries of findings from a 2009 study on intermittent, ephemeral and headwater streams. There’s information about public drinking water systems in the U.S., too. Local drinking waterinformation is also available by state.

What I found interesting in looking at stream data for the State of Maine is that I live in an area where 94-100% of stream miles are contained in Source Protection Areas (SPAs). An SPA is an area “upstream from a drinking water source or intake that contributes surface water flow to the drinking water intake within a 24-hour period.” (EPA, Office of Water) That means that most of, if not all of, the intermittent, headwater and ephemeral streams in those areas support public drinking water systems.

It makes sense. I live in a town that’s home to the “landlocked salmon” in Sebago Lake. The lake is one of the few lakes in the country that receives a Filtration Avoidance Waiver from the EPA. This waiver saves the communities in the region $125 million in construction and operation costs—since there is no need for a water treatment facility. I recently learned that if the Portland Water District had to invest in such a water treatment system, it would cost over $100 million. Currently, the cost-savings come from the convergence of headwater, intermittent and ephemeral streams throughout the Sebago Lakes Region watershed.  We also know that area wetlands are equally valuable for their ecological services, including flood attenuation and protecting water quality in those very streams. It is my hope as a local conservation official, and through volunteering with small watershed groups, like the Healthy Waters Coalition in the Sebago Lakes Region, we can inform and educate municipal decision-makers on the value of protecting headwater streams.

Meanwhile, the Maine Association of Wetland Scientists is holding its annual meeting on March 25th. This year’s meeting focuses on rivers and streams.

For further reading, check out these related blogs:

Streams Take Me By Surprise, by Travis Loop, EPA blog

Rivanna streams not safe for swimming and boating? Find out more on Thurs, March 21
Rivanna River Basin Commission (Charlottesville, VA)

Managing Municipal Stormwater: Protecting Water Quality, Streams and Communities
Penn State Extension Blog

Rivers, Streams, Water Falls, Food and More, by Bill Trussell, Fishing Through Life

For further information about streams, click here.

The Love Lives of Horseshoe Crabs, Not Cannibals

Amidst the studies on Hurricane Sandy’s impacts on coastal communities—which affected the lives of people, most notably—some recent studies have examined the impacts on the lives of a strange ancient creature: horseshoe crabs. Distant relatives of scorpions and spiders, horseshoe crabs are not true crabs, or crustaceans. They’ve been around for over 1 billion years and lived alongside dinosaurs. See “The Life and Times of the Earliest Horseshoe Crabs,” (Rudkin, Royal Ontario Museum). Unlike a scorpion, crab or spider, horseshoe crabs don’t bite, sting or pinch. And unlike cannibalistic crustaceans, adult horseshoe crabs do not congregate (except to spawn seasonally), which is possibly a way to avoid large crabs attacking smaller horseshoe crabs—thus, avoiding cannibalistic behavior as a species. (Sekiguchi, Shuster, Jr., 1999) Their anatomy is interesting, as illustrated below.

Each spring, horseshoe crabs spawn along creek-mouth beaches and shoals. They like sandy beaches. Naturally, these coastal areas, rich in wetlands, peat bogs and saltwater marsh, were hit hard by Hurricane Sandy. What’s more, sea level rise has eroded certain coastal beaches where horseshoe crabs used to spawn, decreasing the habitat suitable for spawning. See Sea Level Rise and the Significance of Marginal Beaches for Horseshoe Crab Spawning (Botton and Loveland, 2011).

In the Delaware Bay, for example, the American Littoral Society, along with the Wetlands Institute, the New Jersey Department of Environment Protection and New Jersey Audubon, have assessed the impacts of Hurricane Sandy on horseshoe crab populations in the Bay. Watch this video of horseshoe crab spawning in Delaware. Read Hurricane Sandy Race To Restore Horseshoe Crab Spawning Grounds (March 2013). Videos depict horseshoe crabs spawning, swimming upside down and righting themselves.

In a joint report by the Wetlands Institute, NJ Audubon Society and NJ Division of Fish & Wildlife (“Damage from Superstorm Sandy to Horseshoe Crab Breeding and Shorebird Stopover Habitat on Delaware Bay,” December 2012), wetlands did well overall, despite some “wash over” during storm surges of Hurricane Sandy, according to Lenore Tedesco, Ph.D. Director of Research at the Wetlands Institute. Yet a major finding was a 70% decrease in suitable breeding habitat for horseshoe crabs. In addition, there was about the same amount of increase in unsuitable habitat for horseshoe crab spawning. Specifically, the scientists classified the types of habitat into five categories:

  1. Optimal: undisturbed sand beach;
  2. Suitable: sand beach with only small areas of peat and/or backed by development
  3. Less Suitable: exposed peat in lower/middle intertidal zone;
    sand present in upper intertidal;
  4. Avoided habitat:  exposed peat or active salt marsh fringing the shoreline;
    no sand present
  5. Disturbed due to beach fill, riprap or bulkheading.
    (Niles, Tedesco, Sellers, et. al. 2012)

In areas where the habitat is less suitable, with exposed peat, there is less sand for the horseshoe crabs to lay their eggs. The full report includes recommendations for habitat restoration. For more information about post-Sandy restoration recommendations, visit the Wetlands Institute’s website here.

Many years ago, I learned that horseshoe crabs (Limulus polyphemus) lay at the heart of some medical advances in immunology research. Apparently, horseshoe crab blood and immunology can serve scientists with a model to develop treatments for patients with HIV, AIDS or other immune deficiency disorders. Its “blue blood” contains Limulus Amebocyte Lysate, which allows medical researchers to detect bacterial toxins. In ecological projects, the spawning and genetic diversity of horseshoe crabs is the focus, or the relationship between horseshoe crabs and fisheries. For an overview of various research projects on horseshoe crabs happening in 18 states and two countries, see these project summaries. There’s some fascinating research underway.

The Wetland Institute has a number of publications on its website related to horseshoe crab research and conservation. There’s also an “Adopt a Horseshoe Crab” program and horseshoe crab census data available from 1999-2009. In May, the Institute holds festival activities, including teaching tank/aquarium talks on saltmarsh ecology, shorebirds and horseshoe crabs. For more information about the Horseshoe Crab Festival in May,click here.

More videos:

See horseshoe crab counting (Washington Post video, June 2012)
NATURE program on horseshoe crabs (PBS, 2008)
Horseshoe crab documentary (Nick Baker, Science Channel)

For more on horseshoe crab biology and ecology, see this National Park Service webpage and materials developed by the Mid-Atlantic Sea Grant and NOAA joint programs on horseshoe crab research. Finally, check outhttp://horseshoecrab.org/ which houses an online warehouse of information on the biology, conservation and research of horseshoe crabs.

Watershed Modeling & Wetland Mapping

Strange WetlandsI recently attended a luncheon meeting on planning for the Sebago Lake watershed, facilitated by University of Maine. Two goals were to discuss types of watershed modeling and mapping that had been done in the past—in that watershed and elsewhere in Maine—and what was important to watershed managers in the future. The group consisted of wetland scientists, code enforcement officers, town planners, representatives from conservation commissions and waterways associations.

Many of us gave examples of modeling or mapping watersheds. For example, I talked about my experience mapping water features, such as streams and wetlands, and analyzing development patterns in the Northeast Creek watershed on Mount Desert Island, as part of a larger USGS-led aquifer study. At that time, I was working at a land trust and volunteering for the Bar Harbor Conservation Commission.  During the project, I learned about hydrology, groundwater recharge in a granite aquifer and the importance of understanding the limits of an aquifer when planning for development, ie. subdivisions. When a friend’s septic tank erupted, I saw (and smelled) the repercussions of exceeding those limits. It’s not polite dinner conversation.

Good thing we were only having lunch. When the subject turned to watershed modeling, a number of people, including myself, raised issues about data—because a model is only as good as the data put into it. Further, we discussed the merits of a model in the context of a constantly changing climate. Most noted the weather of 2012 and that a model based on water levels this year might be outdated by next year, and so forth. A recent report by Environment Maine on the link between extreme weather events and climate change can be found here.

When asked what important factors should be included in a watershed model, the “hot button” topics included climate change, invasive species, water quality, wetlands, conservation priorities and water quantity. For more information about University of Maine’s watershed modeling project, click here. ASWM has posted links to a number of wetland and watershed tools and resources under its Watershed heading on the main website. For example, there’s a wetlands and watershed protection tool kit, link to a “Wetlands-at-risk Protection” tool, as well as the Natural Floodplain Function Alliance.  Local governments and watershed managers may be interested in ASWM’s guide, Establishing Local Government Wetlands and Watershed Management Programs by Jon Kusler, Esq. Ph.D.  See the Healthy Waters Coalition’s links to resources about watersheds.

In addition, the U.S. Fish and Wildlife Service and Virginia Tech recently launched a new website, Wetlands One-Stop, with information about wetlands and wetland mapping. Virginia Tech’s Conservation Management Institute (CMI) designed “Wetlands One-Stop” to provide online access to geospatial data on wetlands and soils produced by federal and state agencies. For more information, click here. For additional information on wetland mapping, visit ASWM’s wetland mapping page.

Pond Scum: The Good, the Bad, and the Sludgy

Globs of algae the size of human heads floated around like something out of a B-movie on MST3K. It was unnerving to bump into one of them. I can handle swimming with eels…but I find it creepy to swim with severed head-shaped algae clusters. When I arrived at my little local lakeside beach in southern Maine, I thought I was lucky because no one else was there in 90-degree heat. Then I realized the beach was vacant because of the algal bloom. An algal bloom is a concentration of cyanobacteria. Strange Wetlands covered types of algae blooms, including blue green algae, in an earlier post (2010).

In the Great Lakes region this summer, some communities are seeing algal blooms, including the Eastern parts of Lake Erie. Algal blooms turn the water a bright scummy green. Some of the vegetation washes ashore in clumps, deterring beach goers but not always causing beach closings.  However, NOAA has recently issued a prediction that western Lake Erie should see a lesser algal bloom this summer. This is good news.NOAA, partners predict mild harmful algal blooms for western Lake Erie this year. A presentation will be held on algal blooms and the “Lake Erie Dead Zone” by an aquatic biologist in Cleveland Heights on July 25th.  For more information about the Lake Erie Dead Zone, visit EPA’s webpage. But this year’s bloom on Lake Erie is likely to be only one tenth the size of the bloom that occurred last year.

Last year, Lake Erie’s harmful algal bloom was visible from space (2011). In fact last year’s algae blooms in the Great Lakes were touted as the ‘worst since the 1960s,’ something akin to the comics of “The Creature from the Black Lagoon.” The Natural Resources Defense Council presented analysis of Ohio beach closings and algal bloomsand on New York beaches for Lake Ontario and Lake Erie with monitoring data collected in 2011. Full report here.

What’s the issue this summer? Not all algae, or “pond scum,” is created equal. Some amount of algae is a normal part of the ecosystem but too much of the wrong types are harmful. A Great Lakes native algae called Spirogyra is thriving on the conditions caused by invasive zebra and quagga mussels. The result is a sludge-like mat of green algae that washes up on beaches along Lake Michigan and other lakes. Another green alga, Cladophora, increased because of the zebra mussels, and both types of algae wash ashore in thick mats, which rot, stink and harbor E. Coli, Salmonella and other pathogens. The stench from the beach muck is comparable to manure. See video, “All Washed Up: Lake Michigan’s Algae Challenge.” For a fact sheet on Harmful Algae Blooms & Muck: What’s the Difference (Michigan Sea Grant), click here. For more about the relationship between algae and zebra mussels, see Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (report, 2002).

Another serious factor this summer is drought, which is occurring in a large part of the country. For instance in Wisconsin, the hot weather has caused harmful blue green algae blooms in Lake Winnebago and Tainter/Menomin lakes, where there is a history of blooms, but the harmful algae is also showing up in lakes where it previously did not occur. They are facing a similar problem to that in Lake Michigan with the zebra mussels and Cladophora, warned to be harmful to boaters and swimmers. The US Fish & Wildlife Service has found dead waterfowl, most likely killed by botulism, in Wisconsin lakes this year. For a past FWS report on waterfowl and botulism in the Wisconsin lakes, click here.

Algal blooms are probably not at the top of the list of issues concerning those keeping an eye on the Farm Bill developments—but this is one of the reasons why the Farm Bill’s Conservation Title is so crucial to the protection of wetlands and water resources—including the Great Lakes. See Farm Bill Conservation Programs Are ‘Essential for Great Lakes Restoration’

Restoring Lost Ecological Connections: Fish Ladders and Dam Removal

Growing up in midcoast Maine I was accustomed to celebrating the return of the alewives, an anadromous, or sea-run fish, each spring. Recently a project to restore the fish ladder for the alewives has neared completion in a stream at Damariscotta Mills. The Maine state legislature called for a fish passage in 1741, which led to the town finally building the fish ladder in 1807 to allow the alewives to return to Maine’s streams, ponds and lakes to spawn. The project to rebuild the old fish ladder began 200 years later in 2007 and has entered a final phase in 2012. One challenge for the restoration crew has been to make sure that the fish ladder was functional for the alewives each season. The running of the alewives just occurred in late May/early June.

Meanwhile, another river in Maine supports the run of alewives, salmon, sturgeon and other sea-run fish: the Penobscot, Maine’s largest river. A major component of a restoration project to restore critical habitat in Maine’s largest watershed is underway this week along the Penobscot River. The Great Works Dam on the lower part of the river is being removed this week. See a video of this dam removal (June 11, 2012). This is the culmination of a lot of planning over the past eight years on the part of federal, state and tribal governments, along with nonprofit and for-profit parties.  These have included the State of Maine, The Nature Conservancy, National Oceanic Atmospheric Administration, Penobscot Nation, Maine Audubon, Natural Resources Council of Maine, Trout Unlimited, American Rivers, Atlantic Salmon Federation and other partners. Together they form the Penobscot River Restoration Trust. This project began in 1999, but an essential agreement formed in 2004 laid the groundwork for the collaborative restoration efforts. This unprecedented agreement set out to accomplish these things:

  1. Restore self-sustaining populations of native sea-run fish, such as the endangered Atlantic salmon;
  2. Renew opportunities for the Penobscot Nation to exercise sustenance fishing rights;
  3. Create new opportunities for tourism, businesses and communities;
  4. Resolve long-standing disputes and avoid future uncertainties over the regulation of the river.

The agreement further laid out a plan to remove two dams on the lower part of the river, including the Great Works Dam removed this week, and to construct fish bypasses by a third dam and to improve fish passage at four other dams. In 2007, the Penobscot River Restoration Trust and the U.S. Fish and Wildlife Service announced the project, and added that it would have far-ranging benefits on the Gulf of Maine, protecting endangered species, migratory birds, as well as riverine and estuarine wetlands. It would also enhance recreational activities, such as paddling and fishing and watching wildlife.  The riverine habitat is home to osprey, kingfishers, otters and bald eagles. The project has been widely known as one of the most innovative river restoration projects in the nation.

Some members of the Penobscot River Restoration Trust have made comparisons to the 1999 dam removal on the Kennebec, which was among notable dam removal projects that set a trend throughout the country. The two rivers share some of the same ecological communities. Those involved with monitoring the Kennebec since 1999, have noted a return of more birds, namely osprey and bald eagles, due to the increased number of alewives present, a food source for the birds of prey. “It’s restoring some of the lost ecological connections in the river. First, we’ve seen the rebuilding of the herring run. And now we’ve seen the building of the eagle and osprey populations,” according toAndrew Goode of the Atlantic Salmon Federation.

The Penobscot River and its tributaries flow through the Maine North Woods to Penobscot Bay, in midcoast Maine. Scientists began collecting baseline data for monitoring wetlands, rare plants, invasive species, geomorphology, water quality, smolt telemetry (tagging and monitoring the actively migrating young salmon), tracking fish movements and fish communities, including sturgeon, salmon and other species, in 2009. See monitoring poster. For more information about the monitoring work with sturgeon,click here.

Dam removal, fish passage and river restoration projects are happening in other parts of the country, too. Trout Unlimited has recently blogged about the legacy of “Making rivers whole again” and what’s considered the largest dam removal project in the country is underway in the Olympic wilderness of Washington state. The Elwha Dam removal project began last fall to restore the Elwha River and ecosystem. It’s managed by theNational Park Service. A recent look at case-studies on dam removal and legislation in the U.S. from an energy perspective was provided in “Exploring the Reasons behind Dam Removal.” In addition, the Connecticut River has become the first National Blueway thanks to the efforts of over 40 local, state and federal government agency and nonprofit and for-profit coalition members. The designation will improve recreational opportunities for boating, canoeing, trail-building and conservation along the river in four states: CT, NH, MA and VT. The idea originated out of President Obama’s “America’s Great Outdoors” initiative. For a snapshot of other ideas in the Great Outdoors initiative, click here.

Updated: April 4, 2013: Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective