Category Archives: Nature

Strange Wetlands: Preventing a Lesser Known Tick-Borne Illness, Anaplasmosis

My trusty dog, Sophie-Bea, a dachshund-pointer, and I frequently walk through wetlands. First, my land is rich in wetlands: a black ash seep, which I call “Fern Gully,” a vernal pool with wood frogs and sallies, and a perennial stream that flows into Raymond Pond. We like to walk along a pine-needled path from my woods down to the pond and back. Lately, a thick mustard yellow froth of pollen coats the surface of the pond. If I had let the dog wade in the water, she would have come out looking more like a yellow lab, albeit a weirdly shaped one. (She’s black and white.) At the edge of the pond, she sniffed the water and it turned her pointy black nose into a clownish canary blotch.  IMG_0295

This time of year, we’re more mindful of ticks. In addition to treating her with Frontline, I pat her down with a natural bug repellant called Skeeter Skedaddle™ – the kind that’s dog-friendly. I love how it smells. I wear it, too, and slathered it on that day, like any other day. I made the mistake of wearing sandals though and by the time I got home, I unstrapped the sandals to find a fat tick stuck to the top of my foot. It glowed red in its belly. I pulled it off and noticed two bite marks. After disposing of the tick, which is unwise to flush into the toilet I’ve learned, but to burn the tick with a match (carefully in the sink), I applied witch hazel and hydrogen peroxide onto the bites, along with a dab of antibacterial ointment. It doesn’t itch. It did worry me.

A year ago this month, I came down with a terrible flu-like illness called Anaplasmosis. It’s a tick-borne illness caused by a tick bite from a tick infected with the germ called Anaplasma phagocytophilum. Last summer, the Maine Center for Disease Control and Prevention sent out an alert about Anaplasmosis. The alert explained that cases of Anaplasmosis are on the rise in Maine. Previously, it was rare for someone to contract this illness from a tick bite in the Pine Tree State. Even in summer 2012, hospitals misdiagnosed people with “the flu,” when in some cases, it was actually this Anaplasmosis. In my case, it was most likely Anaplasmosis, since I walk through the woods often and come into contact with areas known to inhabit ticks. I occasionally find ticks in my home.

Symptoms of Anaplasmosis include fever, headache, malaise, severe body aches, cough, joint pain, stiff neck and confusion.  In June 2012, I thought I’d eaten a bad avocado, or been exposed to the bad kind of an algae bloom while swimming in the lake. (I wrote about the algae bloom in my Adventures of Fen Fatale series.) At the time, I was working for ASWM and I started to feel sick on a Monday–sweaty, coming down with a fever, nausea. Images of globs of algae clung to me as I suffered through a fever of 102 degrees for two days. On Tuesday night, I called 911 and the EMTs came to my house, since I was convinced I was dying of some kind of poison,  tetanus or some other ill fate. It felt like my organs had seized up and everything hurt.  Chills all over. The body aches were so severe that I had to crawl down the stairs to let the EMTs into my house (rather than let them bust in the door). The EMTs found me delirious from the fever. Even after the fever came down on Wednesday, I couldn’t walk for a few days; my relatives came to take care of me, since I was bedridden. (This is highly unusual for me, since I have an almost superhuman immune system.) It was frightening, too.

See fact sheets, prevention info and notices to Maine residents from the Maine Center for Disease Control & Prevention here. 

Since then, I’ve done some research on how to prevent this from happening again. The reality is that Anaplasmosis is treated differently than that of Lyme Disease. When a person suspects that a tick bite has left that tell-tale sign, a bull’s eye shaped bite, that person has an option of getting an anti-biotic to prevent the onset of Lyme Disease. The same is not true for those who might have contracted Anaplasmosis. The main “prevention” is to reduce exposure to ticks by wearing appropriate clothing and checking clothes and skin for ticks. Apparently, in cases of people contracting Anaplasmosis, they often don’t remember getting a tick bite, and there is no tell-tale bull’s eye mark. For specific prevention and treatment information, visit http://www.cdc.gov/anaplasmosis/ . If you do get a tick bite, pay attention to symptoms if they occur. If you get a fever, and think you might have come into contact with a tick, contact your doctor or a health professional. Treatment is important. Anaplasmosis can be serious, or fatal, in babies, toddlers, elderly people and those with a compromised immune system. For others, it can mean a week of severe body aches, fever, malaise, etc. It certainly knocked the wind out of my sails.

Read these related blog posts:

Mosquitoes, ticks and bees are summer hazards, as are sunshine and poison ivy – Washington Post Blog – June 17, 2013

Drs. Oz and Roisen: Tick, tick, tick  – June 2013

Tick-borne disease is on the rise in Maine and Anaplasmosis in particular – May 2013

Advertisements

Healthy Waters Coalition – What’s on Our Minds, In Our Hearts

At my Healthy Waters Coalition meeting tonight, where we discussed the value of accurate, balanced information about oil spill prevention, I accidentally spilled pink lemonade across the agenda.  (From now on, the incident will be remembered as the “pink spill,” and it can be added to a long list of funny things I have done while leading coalition meetings.) I began to think about what’s really motivating our efforts to inform and educate Sebago Lakes Region citizens and local businesses about watershed issues.

We are a water-based economy here in this part of southern Maine. Boat rentals and recreation-based businesses, real estate and restaurants, florists and landscaping contractors, summer camps for children and accommodations (think: Inn by the Pond), not to mention waterfront property in towns–and property taxes paid to Towns–all bring in millions of dollars in annual revenue for the Sebago Lakes Region. The State of Maine tracks the annual revenue for freshwater fishing and accommodations for several Lakes Region towns. Wetlands are valued for their ecological services, too, and that translates to dollars. Real dollars. Wetlands attenuate flooding and aid in filtering waters to provide good water quality in our groundwater, which produces the drinking water for those who have private wells.  All of the headwater streams (94-100% of streams) in the region are located in Source Water Protection Areas (SPAs), meaning that they directly feed into a public drinking water system. In our region, that system is Sebago Lake, which is so clean, it’s exempt from the federal filtration requirement, an expensive option if ever it were to become necessary for the Portland Water District to put in place.

I want to reach out to other groups engaged in an open dialogue about the possible transportation of oil sands through New England and the importance of protecting our local watersheds, local economy–as the two are interconnected.  While the HWC already has members in 8 Lakes Region towns, representatives from local government boards and committees, watershed organizations, local businesses and other interests, such as Saint Joseph’s College, and we have partnered with some fantastic environmental and conservation-oriented nonprofit organizations already, I’d like to connect the Healthy Waters Coalition with a broader network.  I’m interested in connecting with folks at ConservAmerica, town and city revitalization committees, regional Chambers of Commerce, and the business community. We have so much invested in our waters. While pondering this, I scribbled some thoughts and turned it into this info-graphic (below). I like how it came out. Let me know what you think.

HWC_wordle3

Convergence: Where Streams & Stories Connect

Eighteen years ago, my brother and I eloped with our mother to Kaua’i. I say “eloped” because the trip was a romantic surprise after my step-dad proposed over the phone. He was already there—on Kaua’i. It was February, 1995, my senior year of high school, and the end of February school vacation. I turned 18 during the 23 hour plane ride to the Big Island of Hawai’i. My parents—my mother and step-dad, married at the point of convergence, where two streams met before emptying into the Pacific. Waterfalls peeled like tropical fruit through the rainforest. Two fed these streams. Neither my brother nor I had ever experienced swimming in the Pacific Ocean, let alone kayaking through a jungle. One day we hiked to a massive 40-foot waterfall, which we learned had been featured in one of the King Kong movies. I slipped behind the falls into a cave, sprayed by its awesome force. Those streams created our new family.

Flash forward to 2013:  A small perennial stream meanders through my black ash seep, past a vernal pool and flows into the pond. It’s not dramatic. It’s barely audible. The nor’easter that took everyone on the East coast by surprise yesterday dropped over a foot of snow. It’s that light fluffy stuff perfect for a snowshoe hike. Everything’s quiet, cold and white. Yet the stream trickles, melting the snow on either side. It persists. This stream is one of many, many streams in Maine that flow either perennially, intermittently or ephemerally—that is, after storms. Streams criss-cross and converge, form major tributaries like Panther Run, feed creeks and rivers, such as the Crooked River, emptying into lakes, picturesque waters such as Panther Pond, and wetlands throughout the Sebago Lakes Region of southern Maine. Most of the residents in this region depend on the groundwater for their drinking water. Those residents in the Portland Water District get their drinking water from Sebago Lake. Either way, the streams that flow and converge throughout the state—even beyond this watershed—play an integral part of life as we know it.

In thinking about the importance of headwater streams, it’s useful to see streams in a larger watershed context. The U.S. Environmental Protection Agency (EPA) has launched a great online tool with a headwater stream index for the entire United States. Maps showing stream data are available for 48 states (Alaska and Hawai’i are not available at the time of this post). EPA has published the summaries of findings from a 2009 study on intermittent, ephemeral and headwater streams. There’s information about public drinking water systems in the U.S., too. Local drinking waterinformation is also available by state.

What I found interesting in looking at stream data for the State of Maine is that I live in an area where 94-100% of stream miles are contained in Source Protection Areas (SPAs). An SPA is an area “upstream from a drinking water source or intake that contributes surface water flow to the drinking water intake within a 24-hour period.” (EPA, Office of Water) That means that most of, if not all of, the intermittent, headwater and ephemeral streams in those areas support public drinking water systems.

It makes sense. I live in a town that’s home to the “landlocked salmon” in Sebago Lake. The lake is one of the few lakes in the country that receives a Filtration Avoidance Waiver from the EPA. This waiver saves the communities in the region $125 million in construction and operation costs—since there is no need for a water treatment facility. I recently learned that if the Portland Water District had to invest in such a water treatment system, it would cost over $100 million. Currently, the cost-savings come from the convergence of headwater, intermittent and ephemeral streams throughout the Sebago Lakes Region watershed.  We also know that area wetlands are equally valuable for their ecological services, including flood attenuation and protecting water quality in those very streams. It is my hope as a local conservation official, and through volunteering with small watershed groups, like the Healthy Waters Coalition in the Sebago Lakes Region, we can inform and educate municipal decision-makers on the value of protecting headwater streams.

Meanwhile, the Maine Association of Wetland Scientists is holding its annual meeting on March 25th. This year’s meeting focuses on rivers and streams.

For further reading, check out these related blogs:

Streams Take Me By Surprise, by Travis Loop, EPA blog

Rivanna streams not safe for swimming and boating? Find out more on Thurs, March 21
Rivanna River Basin Commission (Charlottesville, VA)

Managing Municipal Stormwater: Protecting Water Quality, Streams and Communities
Penn State Extension Blog

Rivers, Streams, Water Falls, Food and More, by Bill Trussell, Fishing Through Life

For further information about streams, click here.

The Love Lives of Horseshoe Crabs, Not Cannibals

Amidst the studies on Hurricane Sandy’s impacts on coastal communities—which affected the lives of people, most notably—some recent studies have examined the impacts on the lives of a strange ancient creature: horseshoe crabs. Distant relatives of scorpions and spiders, horseshoe crabs are not true crabs, or crustaceans. They’ve been around for over 1 billion years and lived alongside dinosaurs. See “The Life and Times of the Earliest Horseshoe Crabs,” (Rudkin, Royal Ontario Museum). Unlike a scorpion, crab or spider, horseshoe crabs don’t bite, sting or pinch. And unlike cannibalistic crustaceans, adult horseshoe crabs do not congregate (except to spawn seasonally), which is possibly a way to avoid large crabs attacking smaller horseshoe crabs—thus, avoiding cannibalistic behavior as a species. (Sekiguchi, Shuster, Jr., 1999) Their anatomy is interesting, as illustrated below.

Each spring, horseshoe crabs spawn along creek-mouth beaches and shoals. They like sandy beaches. Naturally, these coastal areas, rich in wetlands, peat bogs and saltwater marsh, were hit hard by Hurricane Sandy. What’s more, sea level rise has eroded certain coastal beaches where horseshoe crabs used to spawn, decreasing the habitat suitable for spawning. See Sea Level Rise and the Significance of Marginal Beaches for Horseshoe Crab Spawning (Botton and Loveland, 2011).

In the Delaware Bay, for example, the American Littoral Society, along with the Wetlands Institute, the New Jersey Department of Environment Protection and New Jersey Audubon, have assessed the impacts of Hurricane Sandy on horseshoe crab populations in the Bay. Watch this video of horseshoe crab spawning in Delaware. Read Hurricane Sandy Race To Restore Horseshoe Crab Spawning Grounds (March 2013). Videos depict horseshoe crabs spawning, swimming upside down and righting themselves.

In a joint report by the Wetlands Institute, NJ Audubon Society and NJ Division of Fish & Wildlife (“Damage from Superstorm Sandy to Horseshoe Crab Breeding and Shorebird Stopover Habitat on Delaware Bay,” December 2012), wetlands did well overall, despite some “wash over” during storm surges of Hurricane Sandy, according to Lenore Tedesco, Ph.D. Director of Research at the Wetlands Institute. Yet a major finding was a 70% decrease in suitable breeding habitat for horseshoe crabs. In addition, there was about the same amount of increase in unsuitable habitat for horseshoe crab spawning. Specifically, the scientists classified the types of habitat into five categories:

  1. Optimal: undisturbed sand beach;
  2. Suitable: sand beach with only small areas of peat and/or backed by development
  3. Less Suitable: exposed peat in lower/middle intertidal zone;
    sand present in upper intertidal;
  4. Avoided habitat:  exposed peat or active salt marsh fringing the shoreline;
    no sand present
  5. Disturbed due to beach fill, riprap or bulkheading.
    (Niles, Tedesco, Sellers, et. al. 2012)

In areas where the habitat is less suitable, with exposed peat, there is less sand for the horseshoe crabs to lay their eggs. The full report includes recommendations for habitat restoration. For more information about post-Sandy restoration recommendations, visit the Wetlands Institute’s website here.

Many years ago, I learned that horseshoe crabs (Limulus polyphemus) lay at the heart of some medical advances in immunology research. Apparently, horseshoe crab blood and immunology can serve scientists with a model to develop treatments for patients with HIV, AIDS or other immune deficiency disorders. Its “blue blood” contains Limulus Amebocyte Lysate, which allows medical researchers to detect bacterial toxins. In ecological projects, the spawning and genetic diversity of horseshoe crabs is the focus, or the relationship between horseshoe crabs and fisheries. For an overview of various research projects on horseshoe crabs happening in 18 states and two countries, see these project summaries. There’s some fascinating research underway.

The Wetland Institute has a number of publications on its website related to horseshoe crab research and conservation. There’s also an “Adopt a Horseshoe Crab” program and horseshoe crab census data available from 1999-2009. In May, the Institute holds festival activities, including teaching tank/aquarium talks on saltmarsh ecology, shorebirds and horseshoe crabs. For more information about the Horseshoe Crab Festival in May,click here.

More videos:

See horseshoe crab counting (Washington Post video, June 2012)
NATURE program on horseshoe crabs (PBS, 2008)
Horseshoe crab documentary (Nick Baker, Science Channel)

For more on horseshoe crab biology and ecology, see this National Park Service webpage and materials developed by the Mid-Atlantic Sea Grant and NOAA joint programs on horseshoe crab research. Finally, check outhttp://horseshoecrab.org/ which houses an online warehouse of information on the biology, conservation and research of horseshoe crabs.

Wetland Ferns Webinar

February is one of my favorite months. Some may dislike “dreary February” but I am biased; it’s my birthday month. As a special treat, I participated in an afternoon “Swamp Seminar” to learn how to identify northeastern wetland ferns. The webinar is part of an online training series offered by Swamp School. After the training, I earned a certificate.  Since I’ve written about ferns a few times for this blog, I thought I better brush up on fern morphology, before I made a fern faux pas. And as it happens, I was wrong about one plant: sweet fern (Comptonia peregrina) is a member of the heath family, not a true fern.

The “Swamp Seminar” on wetland ferns started with the parts of a fern. Prior to this class, I knew to refer to the frond, which is the whole fern leaf, and I understood that rhizomes are the roots, but the rest of a fern’s morphology was new information. It was fascinating to learn that a fern might be identified based on whether it is once, twice or thrice pinnate–meaning, the number of cuts on the pinna, or leaflet. Lady Fern, a common fern that grows throughout the northeast, is three-times pinnate with a rough-edged leaflet, making it look lacy. Several ferns have similarly feminine names like Venus Hair Fern (Adiantum capillus‐veneris) and Northern Maiden-Hair Fern (Adiantum pedatum), or Maiden-Hair Spleenwort (Asplenium trichomanes), which grows near waterfalls and is said to be “good for the spleen.”

For wetland professionals, the training addressed whether each fern is an Obligate Wetland species, meaning that it always occurs in a wetland, also known as a hydrophyte (loves water); a Facultative Wetland species, which means that the fern usually shows up in a wetland, but can also be found in upland areas; or, thirdly, it may be a Facultative species, commonly occurring in both wetland and upland areas. Ferns that fit this last category–facultative, are still important to know because they may help someone identify the edge of a wetland.

Identifying wetland plants is fairly complex. See this USDA page on wetland indicator information, for a more specific explanation. Last fall, the National Wetland Plant List was updated and published by the Army Corps of Engineers. ASWM offered a training session on how to use the NWP List website (see this recorded presentation).  Several publications are also available that aid in using this plant list, including A Field Guide to the National Wetland Plant List: Wetland Ratings for Plants of the United States by Steve Chadde, 2012.

Among the many types of ferns covered in the Swamp Seminar, participants learned how to identify Sensitive fern (Onoclea sensibilis), Fragile fern (Cystopteris fragilis) and Interrupted fern (Osmunda claytoniana), which has a distinctive shape. The Swamp School webinar included access to an online tool kit, which allows participants to reference handouts. The website and webinar training are well-organized and condensed to relay a great deal of knowledge. It’s suitable for intermediate and advanced levels—and ideal for wetlandkeepers. Swamp School also offers classes on wetland delineation–in both classroom, field and webinar formats with live, interactive training.  For more information, visit SwampSchool.org.

Update: Hydric Soil Indicators Webinar March 20, 2013. For more information, visitSwampSchool.org

Afflicted Bats Need Avengers; Bat Counters Needed

Lots of people are talking about “Batman.” Why did the “dark knight” choose bats as a symbol for his vigilantism?  In the comics, Bruce Wayne creates his ‘Batman’ identity when he conquered his childhood fear of bats. He created the illusion of having the speed, agility and nocturnal instincts of the only mammal able to sustain flight: the bat.

Although some people readily see the value of bats—including wetlandkeepers—other people are afraid of bats. Myths about bats, such as that bats carry rabies, are unfounded. Less than 1% of bats carry rabies. An individual is more likely to come across a skunk or domestic dog with rabies, than to encounter a bat with rabies. However, it is likely nowadays to find a bat infected with another disease. That is, if you can find a bat at all. Bats are sending up their own “bat-signal” of distress and need our help.

Currently bats in the U.S. are suffering the plight of white nose syndrome, a deadly fungus infection affecting a growing number of bat populations in North America. It started in New York in a bat colony in 2006. The fungus, Geomyces destructans, is considered an invasive species (Lanwig, Frick, et. al. Ecology Letters, 2012). Five years later, the disease has spread to 19 different states.  The death toll of North American bats succumbing to white nose syndrome was 5.5 million as of January 2012.

Myth: Bats will (not) entangle in your hair. Fact: Bats are natural pest control for crops. Myth: Bats suck blood. Fact: You’d have to leave the United States to find a vampire bat. The most common bats in the United States eat insects. Those of us in mosquito-stricken areas of the country, like Maine, are aware of bats’ ability to consume thousands of mosquitoes in a single night. Bats like to swoop through wetlands and riparian areas, and in turn, bat guano fertilizes vegetation. What most people don’t know is that “bat guano is big business” outside the U.S. as a source of fertilizer.  Also see: Effects of wetland network distribution on bat activity.

The most recent studies show that the more “social” the bats are, the tighter the cluster of bats in a colony, the more likely the disease is to spread. The grim reality is that the fungus has wiped out bat populations by the hundreds of thousands throughout the country. It’s in Delaware. It’s in Missouri. It’s in Kentucky, Ohio and Tennessee.  White nose syndrome has been confirmed in Wyoming and Maine, too. The U.S. Fish and Wildlife Service released a protocol for treatment and reduction of spreading the white nose syndrome in June 2012. For instance, if you handle a bat with white nose syndrome while wearing gloves, be sure to wash the gloves in hot water afterwards.

What’s strange is that not every bat infected with the fungus is dying. Sometimes a bat infected with white nose syndrome can live for a full year or longer after infection. In other cases, such as the big brown bat, scientists don’t know how the bats are avoiding the white nose syndrome; it might have to do with migrating south as opposed to huddling together in the infected caves, where the fungus is present. The endangered Indiana bat has not been hit as hard as biologists feared (their population is down about 70%).  One of the most common bats in the Northeast, the little brown bat, has taken a nosedive –its population plummeting by 90% due to white nose syndrome. SeeNortheastern Bat Update and Bats on the Brink.  There has been some hope in Vermont, New York and New Hampshire:  some of the little brown bat colonies are surviving and having pups, based on reports from state Fish and Game agencies. State agencies are calling for citizens to count bats and help promote awareness about them. In addition to research in the U.S., this year happens to be ‘Year of the Bat’ for international research and awareness about bats across the globe.

For the FWS’ blog on White Nose Syndrome, visit:http://whitenosebats.wordpress.com/
For information on Vermont’s Bat Program, click here.
For information on New Hampshire’s Bat Program, click here. 
For National Park Service (KY)’s Bat Program, visit:http://www.nps.gov/maca/whitenose.htm
Also see related blog post, White-nose syndrome confirmed in endangered gray bats

Restoring Lost Ecological Connections: Fish Ladders and Dam Removal

Growing up in midcoast Maine I was accustomed to celebrating the return of the alewives, an anadromous, or sea-run fish, each spring. Recently a project to restore the fish ladder for the alewives has neared completion in a stream at Damariscotta Mills. The Maine state legislature called for a fish passage in 1741, which led to the town finally building the fish ladder in 1807 to allow the alewives to return to Maine’s streams, ponds and lakes to spawn. The project to rebuild the old fish ladder began 200 years later in 2007 and has entered a final phase in 2012. One challenge for the restoration crew has been to make sure that the fish ladder was functional for the alewives each season. The running of the alewives just occurred in late May/early June.

Meanwhile, another river in Maine supports the run of alewives, salmon, sturgeon and other sea-run fish: the Penobscot, Maine’s largest river. A major component of a restoration project to restore critical habitat in Maine’s largest watershed is underway this week along the Penobscot River. The Great Works Dam on the lower part of the river is being removed this week. See a video of this dam removal (June 11, 2012). This is the culmination of a lot of planning over the past eight years on the part of federal, state and tribal governments, along with nonprofit and for-profit parties.  These have included the State of Maine, The Nature Conservancy, National Oceanic Atmospheric Administration, Penobscot Nation, Maine Audubon, Natural Resources Council of Maine, Trout Unlimited, American Rivers, Atlantic Salmon Federation and other partners. Together they form the Penobscot River Restoration Trust. This project began in 1999, but an essential agreement formed in 2004 laid the groundwork for the collaborative restoration efforts. This unprecedented agreement set out to accomplish these things:

  1. Restore self-sustaining populations of native sea-run fish, such as the endangered Atlantic salmon;
  2. Renew opportunities for the Penobscot Nation to exercise sustenance fishing rights;
  3. Create new opportunities for tourism, businesses and communities;
  4. Resolve long-standing disputes and avoid future uncertainties over the regulation of the river.

The agreement further laid out a plan to remove two dams on the lower part of the river, including the Great Works Dam removed this week, and to construct fish bypasses by a third dam and to improve fish passage at four other dams. In 2007, the Penobscot River Restoration Trust and the U.S. Fish and Wildlife Service announced the project, and added that it would have far-ranging benefits on the Gulf of Maine, protecting endangered species, migratory birds, as well as riverine and estuarine wetlands. It would also enhance recreational activities, such as paddling and fishing and watching wildlife.  The riverine habitat is home to osprey, kingfishers, otters and bald eagles. The project has been widely known as one of the most innovative river restoration projects in the nation.

Some members of the Penobscot River Restoration Trust have made comparisons to the 1999 dam removal on the Kennebec, which was among notable dam removal projects that set a trend throughout the country. The two rivers share some of the same ecological communities. Those involved with monitoring the Kennebec since 1999, have noted a return of more birds, namely osprey and bald eagles, due to the increased number of alewives present, a food source for the birds of prey. “It’s restoring some of the lost ecological connections in the river. First, we’ve seen the rebuilding of the herring run. And now we’ve seen the building of the eagle and osprey populations,” according toAndrew Goode of the Atlantic Salmon Federation.

The Penobscot River and its tributaries flow through the Maine North Woods to Penobscot Bay, in midcoast Maine. Scientists began collecting baseline data for monitoring wetlands, rare plants, invasive species, geomorphology, water quality, smolt telemetry (tagging and monitoring the actively migrating young salmon), tracking fish movements and fish communities, including sturgeon, salmon and other species, in 2009. See monitoring poster. For more information about the monitoring work with sturgeon,click here.

Dam removal, fish passage and river restoration projects are happening in other parts of the country, too. Trout Unlimited has recently blogged about the legacy of “Making rivers whole again” and what’s considered the largest dam removal project in the country is underway in the Olympic wilderness of Washington state. The Elwha Dam removal project began last fall to restore the Elwha River and ecosystem. It’s managed by theNational Park Service. A recent look at case-studies on dam removal and legislation in the U.S. from an energy perspective was provided in “Exploring the Reasons behind Dam Removal.” In addition, the Connecticut River has become the first National Blueway thanks to the efforts of over 40 local, state and federal government agency and nonprofit and for-profit coalition members. The designation will improve recreational opportunities for boating, canoeing, trail-building and conservation along the river in four states: CT, NH, MA and VT. The idea originated out of President Obama’s “America’s Great Outdoors” initiative. For a snapshot of other ideas in the Great Outdoors initiative, click here.

Updated: April 4, 2013: Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective