Category Archives: Marine & Estuarine Life

Rarity and Ocean Conservation: Endangered Sawfish, Final Listing on ESA

On 8th Grade “Career Day,” my classmates and I were asked what we wanted to be when we grew up. I remember looking at a giant phonebook-sized directory of “careers” with code-keys for filling out a handout in class. I chose “marine biologist,” “oceanographer,” and asked my teacher, “where’s the code for “Ichthyologist?” Admittedly, I also wanted to write down on my sheet that I

Rachel Carson, marine biologist, author of The Edge of the Sea, Under the Sea Wind, and Silent Spring. Alfred Eisenstaedt photo, Time Life Picture

Rachel Carson, marine biologist, author of The Edge of the Sea, Under the Sea Wind, and Silent Spring. Alfred Eisenstaedt photo, Time Life Picture

considered “mime” and “poet” to be future, possible careers, but only one of those was true. Poetry remains a constant passion for me, and so does ocean conservation. I grew up reading poems by Edna St. Vincent Millay and essays by Rachel Carson, including her book, A Sense of Wonder and later in high school, The Edge of the Sea, which remains one of my favorite books of all time. In 9th grade, I bought a text book on marine biology with babysitting money and studied it outside of school, over the summer, while I studied biology at Gould Academy. Years later, at College of the Atlantic (COA), I studied conservation biology, island ecology and environmental sciences as an undergraduate student. During a summer field course, my COA classmates and I explored over 30 Maine islands and visited Gran Manan, where we saw a 30-foot basking shark in the Bay of Fundy. Studying at COA, usually in a salt-sprayed hammock overlooking the ocean, definitely helped to shape my early passion for islands, oceans and wetlands into a career in conservation.

Sharks, rays and sawfish have always been fascinating to me. (Ocean conservation nerd alert: I even have a notepad from the American Elasmobranch Society on my desk.) I’ve spent some significant time on wetlands in my career, but I’ve also followed ocean conservation with great interest, never leaning too far away from my coastal roots. One area of ocean conservation that has kept my interest over the last two decades has been rare and endangered marine species, such as sawfish, which is the first sea fish to be listed on the U.S. Endangered Species list.  In recent years, there’s been some hope for sawfish populations in South Florida (see this video). Yet, rules published by the National Marine Fisheries Service listed five species of sawfish as endangered this past month in its final ruling.

Smalltooth sawfish. NOAA image

Smalltooth sawfish. NOAA image

“The final rule contains the Service’s determination that the narrow sawfish (Anoxypristis cuspidate), dwarf sawfish (Pristis clavata), largetooth sawfish (collectively, Pristis pristis), green sawfish (Pristis zijsron) and the non-U.S. distinct population segment (DPS) of smalltooth sawfish (Pristis pectinata) are endangered species under the ESA.” (Miller, December 2014)  (See info on the rule in the Federal Register here.)

What makes a thing like the sawfish rare?

Rarity is driven by scale—how many, how much, how big an area. Rarity means that something occurs infrequently, either in the form of endemism, being restricted to a certain place, or by the smallness of a population. In conservation biology the proportion or percentage of habitable sites or areas in which a particular species is present determines the rarity of a species.[1] In addition to the areas in which a particular species is present, the number of individuals found in that area also determines its rarity. There are different types of rarity which can be based on three factors: 1) geographical range – the species may occur in sufficient numbers but only live in a particular place, for example, an island; 2) the habitat specificity – if the species is a “specialist,” meaning it might be confined to a certain type of habitat, it could be found all over the world but only in that specific habitat, for example, tropical rainforests; 3) the population size – a small or declining population might cause rarity. [2] Generally a species can be locally very common but globally very uncommon, thereby making it rare and furthermore, valuable. A species can also be the opposite, globally common but spread out few and far between so that individuals have a hard time sustaining their populations through reproduction and dispersal.

But usually when a person thinks of rarity, they are probably thinking about a species that occurs in very low numbers and lives in only one place, as in many of the endemic creatures on the Galapagos Islands. It is this latter-most perception of rarity that plays a critical role in conservation work. People value rarity because it makes a living thing special—even if it had intrinsic value before it became rare, if it ever lived in greater numbers or more widespread populations.

Sawfish illustration by NOAA

Sawfish illustration by NOAA

Sawfish are a rare, unique—and critically endangered group of elasmobranches—sharks, skates and rays, that are most known for their toothed rostrum. Once common inhabitants of coastal, estuarine areas and rivers throughout the tropics, sawfish populations have been decimated by decades of fishing and survive—barely—in isolated habitats, according to the Mote Marine Laboratory in Florida. Seven recognized species of sawfish, including the smalltooth sawfish (Pristis pectinata), are listed as critically endangered by the World Conservation Union. In addition to the extensive gillnetting and trawling, sawfish are threatened by habitat degradation from coastal development. Sawfish prefer mangroves and other estuarine wetlands. Currently the sawfish population is believed to be restricted to remote areas of southwest Florida, particularly in the Everglades and the Keys. Sawfish are primarily a freshwater-loving creature but they occasionally go out to sea. Lobbyists proposed to add sawfish to Appendix 1 of CITES in 1994 (as part of the first Shark Resolution) to stop the trade in saws but the proposal was defeated in 1997 because it could not demonstrate that stopping trade would provide the necessary protection in wild populations. [See Petition to List North American Populations of Sawfish, 1999, here.] Subsequent proposals in 2007 and 2013 were successful, according to Shark Advocates International. According to the Mote Marine Laboratory conservation biologists, “even if effective conservation plans can be implemented it will take sawfish populations decades, or possibly even centuries, to recover to post-decline levels.” This is the fundamental crux of rarity in conservation biology: even if we do perfect conservation work, once a species is rare and critically endangered, it can take much longer for a species to recover than the time it took to reach the brink of extinction.  In November 2014, all sawfish species were listed on Appendix I & II of the Convention on Migratory Species (CMS).

Sonja Fordham of Shark Advocates explains to me:  The listing of smalltooth sawfish is therefore the most relevant; it has resulted in critical habitat designation, a comprehensive recovery plan, cutting edge research, and encouraging signs of population stabilization and growth.

See this NOAA Fisheries video on smalltooth sawfish conservation.

Several different organizations, in addition to federal and state agencies, are working to protect and conserve sawfish habitat and the endangered species. Here are some links to a few of these organizations and their fact sheets on sawfish:

Save the Sawfish

Sawfish Conservation Society

Shark Advocates, Fact Sheet on Smalltooth Sawfish

Florida Museum of Natural History, Sawfish Conservation

Save our Seas, Conservation of Sawfish Project

Fact sheet for the 11th Meeting of the Conference of the Parties (CoP11) to the Convention on Migratory Species (CMS) on Sawfish (5 species)

IUCN Global Sawfish Conservation Strategy 

[1] Begon, Michael, John L. Harper, Colin Townsend. Ecology: Individuals, Populations, and Communities. Blackwell Scientific Publications, Oxford, London, et. al. 1990. Glossary pp. 859..

[2] Pullin, Andrew. Conservation Biology. Cambridge University Press, 2002. pp.199-201.

The State(s) of Sea Level Rise Science

Peaks Island, Maine

Peaks Island, Maine

In early April, I read an issue of a Peaks Island, Maine newspaper. On the front page, a story’s headline caught my eye:  “Sea level rise not caused by climate change, scientists confirm.” At first I assumed it was an April Fool’s joke, but the date was not April 1st. Then I got upset. I read. It seems that the journalist had (mis)interpreted a report on sea levels in Casco Bay that affirmed the sea level has risen for much longer than most people have known about global climate change. In fact, the State of Maine has over 100 years worth of sea level rise data because the City of Portland has tracked sea level in Portland harbor since 1901. That’s valuable data. The University of Southern Maine has conducted a series of studies on sea level rise, sustainability and the economics involved with planning for adaptation. According to the Environmental Finance Center at the Muskie School (USM), “at least 100 coastal New England towns will be impacted by sea level rise and increased storm surge from climate change.” Read about their COAST and Climate Ready Estuary projects here.

The State of Maine published its climate change action plan in 2004. It identified sea level rise adaptation planning as a necessity. In particular, the Maine Geological Survey conducted several pilot projects that assessed coastal wetland migration. The state’s coastal zoning laws and management practices changed several years ago to reflect sea level rise. Read the 2010 report, “People and Nature: Adapting to a Changing Climate, Charting Maine’s Course.” A great list of collaborators contributed to the development of “People and Nature,” including Natural Resources Council of Maine, several state agencies, several cities and Maine Coast Heritage Trust. It’s hard to find on the state’s website because the State Planning Office’s website was moved and merged with those of other departments.

Meanwhile, adaptation planning has moved to the forefront of climate change science in recent years. Sea level rise scientists at NASA, USGS and other agencies engaged in an online chat session about the state of the science for sea level rise and adaptation planning in early April 2013. (You can listen to the discussion after-the-fact.) What I found interesting is that salt marsh ecology and wetlands play such a vital role in our understanding of sea level rise and its implications for coastal systems. Over the past 6 years, I’ve done some research on sea level rise and learned of sea level rise tools and adaptation planning efforts underway all over the country. A hotspot for sea level rise research is the East coast of the United States, where sea level rise is occurring at a faster rate between Cape Cod and the coast of North Carolina—faster than anywhere else in the world.

Leah Stetson photo

Leah Stetson photo

Several other states have begun to plan for sea level rise. Click on the links below to learn more about what states are doing about sea level rise and adapting natural resource management strategies for climate change. In most cases, it’s a collaborative effort.

MA: Mass Fish & Game Adaptation Planning       MA sea level rise planning maps
MA: Climate Change Adaptation Advisory Committee
NY: New York Sea Level Rise Planning        NY Sea Level Rise Task Force Report 2010
CT: Connecticut Climate Change Adaptation Reports
RI: Rhode Island Coastal Resources Management Council Sea Level Rise Planning
NJ: New Jersey Coastal Management Program Sea Level Rise Planning
NJ: Sea Level Rise in New Jersey, New Jersey Geological Survey Report, 1998
NJ, DE, PA, NY: Delaware River Basin Commission Climate Change Hydrology Report, 2013
DE: Delaware Sea Level Rise Planning & Adaptation
MD: Living Shorelines Program (Chesapeake Bay Trust)
MD: A Sea Level Response Strategy for Maryland (2000)
VA: Planning for Sea Level Rise, Virginia Institute for Marine Science
VA Sea Level Rise Maps
VA: Sea Level Rise Planning at Local Government Level in Virginia
VA: Government Plan for Development of Land Vulnerable to Sea Level Rise
GA: University of Georgia, Sea Grant – Sea Level Rise Planning & Research
FL: Florida’s Resilient Coasts: State Policy Framework for Adaptation (PDF)
FL: Multidisciplinary Review of Current Sea Level Rise Research in Florida  (University of Florida)
MS & AL: Mississippi and Alabama Sea Grant Consortium – Resilience in Coastal Communities
Gulf of Mexico States: Climate Community of Practice: Sea Level Rise Planning
LA: Coastal Protection & Restoration – Recommendations for Sea Level Rise Planning (Includes Louisiana’s 2012 Coastal Master Plan)
CA: California’s Climate Change Adaptation Plan for Water Resources (2012)
CA: State Resources on Sea Level Rise and Adaptation Planning
CA: Adapting to Sea Level Rise Report (2012)
CA, OR, WA: Sea-Level Rise for the Coasts of California, Oregon and Washington (2012)
OR: A Strategy for Adapting to Impacts of Climate Change on the Oregon Coast (2009)
OR: LiDAR Sea Level Rise Research (NOAA Digital Services)
WA: Addressing Sea Level Rise in Shoreline Master Programs (Guidance) (2007)
WA: Sea Level Rise Assessment: Impacts of Climate Change on the Coast (2007)
AK: Alaska’s Melting Permafrost and Melting Sea Ice (national research)
AK: Climate change impacts in Alaska (EPA)
NC: North Carolina Coastal Federation – Sea Level Rise

A note about North Carolina: Several state agencies, including the Departments of Environment & Natural Resources, Transportation and Commerce, all identified threats and risks from sea level rise in 2010. At the time, the state’s Governor signed a letter confirming this. Two years later, North Carolina’s State Senate passed a law that banned sea level rise adaptation planning based on the current science. The House of Representatives rejected the bill, but a compromised version of the bill called for a new study on sea level rise for North Carolina and a ban on exponential sea level rise predictions in modeling. Read this Scientific American article on NC and sea level rise, and the 2012 USGS study that found increasing sea level rise impacts on the coast between Cape Cod and the Carolinas. See “More unwanted national attention for North Carolina on sea level rise” (2013).

If you’re interested in a good summary of sea level rise policy in states, see this 2012 legislative report by Kristin Miller, et. al. (Connecticut General Assembly). It includes an analysis of sea level rise related policy in ten states (Louisiana, Florida, Maryland, Massachusetts, New Jersey, New York, North Carolina, Rhode Island, South Carolina and Virginia.)

Update: Check out Nickolay Lamm’s Sea Level Rise Images Depict What U.S. Cities Could Look Like In Future (PHOTOS) – click here. 

The Love Lives of Horseshoe Crabs, Not Cannibals

Amidst the studies on Hurricane Sandy’s impacts on coastal communities—which affected the lives of people, most notably—some recent studies have examined the impacts on the lives of a strange ancient creature: horseshoe crabs. Distant relatives of scorpions and spiders, horseshoe crabs are not true crabs, or crustaceans. They’ve been around for over 1 billion years and lived alongside dinosaurs. See “The Life and Times of the Earliest Horseshoe Crabs,” (Rudkin, Royal Ontario Museum). Unlike a scorpion, crab or spider, horseshoe crabs don’t bite, sting or pinch. And unlike cannibalistic crustaceans, adult horseshoe crabs do not congregate (except to spawn seasonally), which is possibly a way to avoid large crabs attacking smaller horseshoe crabs—thus, avoiding cannibalistic behavior as a species. (Sekiguchi, Shuster, Jr., 1999) Their anatomy is interesting, as illustrated below.

Each spring, horseshoe crabs spawn along creek-mouth beaches and shoals. They like sandy beaches. Naturally, these coastal areas, rich in wetlands, peat bogs and saltwater marsh, were hit hard by Hurricane Sandy. What’s more, sea level rise has eroded certain coastal beaches where horseshoe crabs used to spawn, decreasing the habitat suitable for spawning. See Sea Level Rise and the Significance of Marginal Beaches for Horseshoe Crab Spawning (Botton and Loveland, 2011).

In the Delaware Bay, for example, the American Littoral Society, along with the Wetlands Institute, the New Jersey Department of Environment Protection and New Jersey Audubon, have assessed the impacts of Hurricane Sandy on horseshoe crab populations in the Bay. Watch this video of horseshoe crab spawning in Delaware. Read Hurricane Sandy Race To Restore Horseshoe Crab Spawning Grounds (March 2013). Videos depict horseshoe crabs spawning, swimming upside down and righting themselves.

In a joint report by the Wetlands Institute, NJ Audubon Society and NJ Division of Fish & Wildlife (“Damage from Superstorm Sandy to Horseshoe Crab Breeding and Shorebird Stopover Habitat on Delaware Bay,” December 2012), wetlands did well overall, despite some “wash over” during storm surges of Hurricane Sandy, according to Lenore Tedesco, Ph.D. Director of Research at the Wetlands Institute. Yet a major finding was a 70% decrease in suitable breeding habitat for horseshoe crabs. In addition, there was about the same amount of increase in unsuitable habitat for horseshoe crab spawning. Specifically, the scientists classified the types of habitat into five categories:

  1. Optimal: undisturbed sand beach;
  2. Suitable: sand beach with only small areas of peat and/or backed by development
  3. Less Suitable: exposed peat in lower/middle intertidal zone;
    sand present in upper intertidal;
  4. Avoided habitat:  exposed peat or active salt marsh fringing the shoreline;
    no sand present
  5. Disturbed due to beach fill, riprap or bulkheading.
    (Niles, Tedesco, Sellers, et. al. 2012)

In areas where the habitat is less suitable, with exposed peat, there is less sand for the horseshoe crabs to lay their eggs. The full report includes recommendations for habitat restoration. For more information about post-Sandy restoration recommendations, visit the Wetlands Institute’s website here.

Many years ago, I learned that horseshoe crabs (Limulus polyphemus) lay at the heart of some medical advances in immunology research. Apparently, horseshoe crab blood and immunology can serve scientists with a model to develop treatments for patients with HIV, AIDS or other immune deficiency disorders. Its “blue blood” contains Limulus Amebocyte Lysate, which allows medical researchers to detect bacterial toxins. In ecological projects, the spawning and genetic diversity of horseshoe crabs is the focus, or the relationship between horseshoe crabs and fisheries. For an overview of various research projects on horseshoe crabs happening in 18 states and two countries, see these project summaries. There’s some fascinating research underway.

The Wetland Institute has a number of publications on its website related to horseshoe crab research and conservation. There’s also an “Adopt a Horseshoe Crab” program and horseshoe crab census data available from 1999-2009. In May, the Institute holds festival activities, including teaching tank/aquarium talks on saltmarsh ecology, shorebirds and horseshoe crabs. For more information about the Horseshoe Crab Festival in May,click here.

More videos:

See horseshoe crab counting (Washington Post video, June 2012)
NATURE program on horseshoe crabs (PBS, 2008)
Horseshoe crab documentary (Nick Baker, Science Channel)

For more on horseshoe crab biology and ecology, see this National Park Service webpage and materials developed by the Mid-Atlantic Sea Grant and NOAA joint programs on horseshoe crab research. Finally, check outhttp://horseshoecrab.org/ which houses an online warehouse of information on the biology, conservation and research of horseshoe crabs.

Restoring Lost Ecological Connections: Fish Ladders and Dam Removal

Growing up in midcoast Maine I was accustomed to celebrating the return of the alewives, an anadromous, or sea-run fish, each spring. Recently a project to restore the fish ladder for the alewives has neared completion in a stream at Damariscotta Mills. The Maine state legislature called for a fish passage in 1741, which led to the town finally building the fish ladder in 1807 to allow the alewives to return to Maine’s streams, ponds and lakes to spawn. The project to rebuild the old fish ladder began 200 years later in 2007 and has entered a final phase in 2012. One challenge for the restoration crew has been to make sure that the fish ladder was functional for the alewives each season. The running of the alewives just occurred in late May/early June.

Meanwhile, another river in Maine supports the run of alewives, salmon, sturgeon and other sea-run fish: the Penobscot, Maine’s largest river. A major component of a restoration project to restore critical habitat in Maine’s largest watershed is underway this week along the Penobscot River. The Great Works Dam on the lower part of the river is being removed this week. See a video of this dam removal (June 11, 2012). This is the culmination of a lot of planning over the past eight years on the part of federal, state and tribal governments, along with nonprofit and for-profit parties.  These have included the State of Maine, The Nature Conservancy, National Oceanic Atmospheric Administration, Penobscot Nation, Maine Audubon, Natural Resources Council of Maine, Trout Unlimited, American Rivers, Atlantic Salmon Federation and other partners. Together they form the Penobscot River Restoration Trust. This project began in 1999, but an essential agreement formed in 2004 laid the groundwork for the collaborative restoration efforts. This unprecedented agreement set out to accomplish these things:

  1. Restore self-sustaining populations of native sea-run fish, such as the endangered Atlantic salmon;
  2. Renew opportunities for the Penobscot Nation to exercise sustenance fishing rights;
  3. Create new opportunities for tourism, businesses and communities;
  4. Resolve long-standing disputes and avoid future uncertainties over the regulation of the river.

The agreement further laid out a plan to remove two dams on the lower part of the river, including the Great Works Dam removed this week, and to construct fish bypasses by a third dam and to improve fish passage at four other dams. In 2007, the Penobscot River Restoration Trust and the U.S. Fish and Wildlife Service announced the project, and added that it would have far-ranging benefits on the Gulf of Maine, protecting endangered species, migratory birds, as well as riverine and estuarine wetlands. It would also enhance recreational activities, such as paddling and fishing and watching wildlife.  The riverine habitat is home to osprey, kingfishers, otters and bald eagles. The project has been widely known as one of the most innovative river restoration projects in the nation.

Some members of the Penobscot River Restoration Trust have made comparisons to the 1999 dam removal on the Kennebec, which was among notable dam removal projects that set a trend throughout the country. The two rivers share some of the same ecological communities. Those involved with monitoring the Kennebec since 1999, have noted a return of more birds, namely osprey and bald eagles, due to the increased number of alewives present, a food source for the birds of prey. “It’s restoring some of the lost ecological connections in the river. First, we’ve seen the rebuilding of the herring run. And now we’ve seen the building of the eagle and osprey populations,” according toAndrew Goode of the Atlantic Salmon Federation.

The Penobscot River and its tributaries flow through the Maine North Woods to Penobscot Bay, in midcoast Maine. Scientists began collecting baseline data for monitoring wetlands, rare plants, invasive species, geomorphology, water quality, smolt telemetry (tagging and monitoring the actively migrating young salmon), tracking fish movements and fish communities, including sturgeon, salmon and other species, in 2009. See monitoring poster. For more information about the monitoring work with sturgeon,click here.

Dam removal, fish passage and river restoration projects are happening in other parts of the country, too. Trout Unlimited has recently blogged about the legacy of “Making rivers whole again” and what’s considered the largest dam removal project in the country is underway in the Olympic wilderness of Washington state. The Elwha Dam removal project began last fall to restore the Elwha River and ecosystem. It’s managed by theNational Park Service. A recent look at case-studies on dam removal and legislation in the U.S. from an energy perspective was provided in “Exploring the Reasons behind Dam Removal.” In addition, the Connecticut River has become the first National Blueway thanks to the efforts of over 40 local, state and federal government agency and nonprofit and for-profit coalition members. The designation will improve recreational opportunities for boating, canoeing, trail-building and conservation along the river in four states: CT, NH, MA and VT. The idea originated out of President Obama’s “America’s Great Outdoors” initiative. For a snapshot of other ideas in the Great Outdoors initiative, click here.

Updated: April 4, 2013: Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective

Tar Sands, Pipeline Proposals & Wetlands

In preparing for a conservation commission meeting, I have been learning more about the tar sands crude oil pipelines and the potential impacts they have on water resources. Previously, I had heard about the tar sands and oil spill on the Kalamazoo River in Michigan in 2010 and the crude oil spill in Yellowstone in 2011 (MT), but I did not know much about tar sands extraction and transportation into North America. Lately there has been some press about a New England proposal for an Enbridge pipeline project. For example, I read a NWF blog post last month and came across a number of useful background documents on state, regional and national issues related to tar sands crude oil pipelines on the Natural Resources Council of Maine’s website. Also in April, the National Wildlife Federation published a report, “After the Marshall Spill: Oil Pipelines in the Great Lakes Region,” which assesses the regulatory issues involved in protecting wetlands and waters in the Great Lakes from similar disasters in the future.

Heating oil pipelineFrom local issues to national concerns:  The topic of tar sands crude oil pipeline proposals in my community of Maine is echoed throughout the New England region, and throughout the U.S. all the way to the Gulf of Mexico. In southern Maine, Sebago Lake, the source of drinking water for the city of Portland, Maine and surrounding towns, plays a prominent role in a number of environmental advocacy groups’ efforts to halt proposals for pumping tar sands through the state. The pipeline currently runs from South Portland, Maine through the Lakes Region towns, including Windham, where ASWM is headquartered, crossing Panther Run and the Crooked River, which feed Sebago Lake. This is just one small area of the longer pipeline, which would cross through many other watersheds throughout New England.

After I presented information at my local conservation commission meeting, I ran into a few neighbors and residents who commented on the issue of a tar sands pipeline proposal that could have an impact on Maine’s watersheds and natural resources.  One business owner said, “They’re still cleaning up the spill in Michigan! If that happened here, we’d be done.” Similar views have been expressed at town meetings, on PBS presentations(winter 2012) and at university informational sessions in southern Maine. The Natural Resources Council of Maine has an ongoing project informing citizens about the proposal and its potential impacts to Maine, as well as the Enbridge proposals for tar sands pipelines elsewhere in the country. For a fact sheet on Tar Sands, Keystone Pipeline Project in Maine (2012), click here.

Boreal Forest Before and AfterWhat are tar sands and where do they come from? Tar sands are a mixture of clay, sand, water and bitumen, a heavy black viscous oil.  The process extracts the bitumen from the other materials and requires other treatment before it can be refined.  It is so thick it requires dilution with additional hydrocarbons before it can be transported through pipelines when it can be later turned into conventional heating oil. This process of transporting it in pipelines has many potentially hazardous impacts to water and other natural resources in the event of a spill.  Once the tar sands crude oil is transported, the process of turning it into conventional oil is not cost-effective or ecologically sensible.  The process releases more than double the harmful greenhouse gasses than conventional heating oil does during production. (See Scientific American.) Currently, the bulk of the tar sands originate in Alberta, Canada—where large pools called tar pits have replaced wetlands. These tar pits are big enough to be seen from space. The most threatened habitat are Canada’s boreal forests, which is 1.3 billion acres of wetlands—among the largest in-tact wetland ecosystems on Earth. Unfortunately, most of the wastewater involved with the tar sands production ends up in streams and rivers throughout the boreal forest, contaminating the wetlands and threatening bird and wildlife habitat. For Alberta’s Government webpage on oil sands, click here.

Alberta Oil Sands MapAccording to mining company reports, 64% of the mining landscape is made up of peatlands. (See related study, “Oil sands mining and reclamation cause massive loss of peatland and stored carbon.”)  There’s some effort underway to restore the wetlands that have been affected by tar sands in Alberta. Oil Sands Wetlands Reclamation: Syncrude, Suncor Plan To Reconstruct Fens It’s unconventional wetland restoration on a large scale. Essentially they’re hoping to recreate a 50-hectare watershed, not just a wetland, for one project. That’s about 125 acres of wetlands and waters. The University of Waterloo’s department of geography and environmental management is involved with the watershed restoration planning. It’s been called a Tar Sands Wetlands Reclamation. However, some Canadian wetland scientists are doubtful that this will work to restore the wetlands.  They say, “Instead of bogs and fens, the industry will build hills topped by plantation forests and fill large man-made lakes with toxic waste bordered by shrubs and salty marshes.” (Rooney, et.al., 2011)

“It’s a completely different landscape,” says study co-author Suzanne Bayley, one of Canada’s top wetland ecologists and a University of Alberta professor. See Scientists Doubt Fix to Wetlands Damaged by Oil Sands Furthermore, fewer wetlands means drier conditions and more fire hazards. See a related presentation on The State of Oil Sands Wetlands Reclamation and Slow Down Oil Sands to Save Wetlands, Scientist Says –with details from a related study of Canadian wetlands. For an Alberta wetlands fact sheet by Water Matters, click here.

So what about tar sands pipelines in the U.S.? In addition to the discussions ongoing in New England, there’s a lot of information available on the potential impacts and environmental risks of tar sands pipeline projects nationally. See Tar Sands Pipelines Safety Risks

By Natural Resources Defense Council, National Wildlife Federation, et.al. – February 2011

Tar Sands Invasion: How Dirty and Expensive Oil from Canada Threatens America’s New Energy Economy By NRDC, Earth Works, Sierra Club, et. al. – May 2010.

Further reading:

Study Disputes Oil Sands ‘Restoration’ Pledge (NY Times Green Blog, March 2012)
Tran-Canada’s New Permit Still Threatens Nebraska’s Water and U.S. Energy Security 
New Keystone XL Tar Sands Pipeline Permit Rejected by Nebraska Residents
 
In through the backdoor: Is Enbridge Inc. trying to bring tar sands to Central Canada and New England?

Sulfide Mining Regulation in the Great Lakes Region
 (includes links to series of reports on impacts to water resources in several states –WI, MI, MN, plus Ontario)
Cattle Ranchers, Environmentalists and the Keystone XL Pipeline

Video: Robert Redford and Waterkeeper Alliance on XL Keystone Pipeline Protest
 (2011)
May 2012 Update: The Great Lakes, New Dumping Ground for Tar Sands Oil
http://ecowatch.org/2012/the-great-lakes-new-dumping-ground-for-tar-sands-oil/

The State of the Gulf Coast Wetlands—Two Years After the B.P. Oil Spill

Since the Deepwater Horizon spill of 2010, dolphin strandings have occurred at an unprecedented high level—over 500 stranded dolphins—one indicator that there is still a major problem in the Gulf (NOAA). Another strong indicator is the accelerated rate of coastal wetland loss in the Gulf as direct result from the impacts of the spill. Prior to the 2010 spill, the state of Louisiana already faced significant coastal wetland loss—about the area equivalent to a football field’s worth of wetlands every hour. Over 1,000 miles of coastal wetlands were contaminated by the oil spill, and despite restoration efforts, the rate of coastal wetland loss is now made more complex by the spill and clean-up process. Efforts to clean up the oil in the marshes, in some areas, depending on the extent of the contamination, have caused further damage to the wetlands. (NWF) A recent report by the National Wildlife Federation, “A Degraded Gulf of Mexico: Wildlife and Wetlands—Two Years into the Gulf OilDisaster” assesses the impacts to sea turtles, dolphins, pelicans, other wildlife and coastal wetlands affected by the B.P. oil spill.

NOAA announced this month that eight Gulf coast restoration projects will begin this year with $60 million earmarked for the work to create marshes, improve coastal dune habitat, restore oyster beds and reefs, and other projects related to the boat industry.  The first phase of the projects will take place in Louisiana, Alabama, Mississippi and Florida. There is more information about these restoration projects atwww.gulfspillrestoration.noaa.gov and www.doi.gov/deepwaterhorizon

Specific project fact sheets on each restoration project involved in this first phase of the Gulf Coast Restoration, called “Early Restoration,” an effort to get the natural resources back to the state prior to the spill, are available on NOAA’s website.  To learn more about the Gulf Coast Early Restoration efforts underway, go to:http://www.gulfspill
restoration.noaa.gov/
restoration/early-restoration/

As part of the response to the spill two years ago, a number of organizations and agencies have worked hard to address the critical needs of wildlife that depended on the coastal wetlands that were contaminated or destroyed by the spill. For example, a shorebird habitat enhancement project provided alternative habitat in Mississippi for waterfowl. A sea turtle project improved nesting and hatching on the Texas coast.

The Gulf coast’s diverse shoreline includes mangroves, cypress swamps, fresh and saltwater marshes and mudflats. What’s really at stake here? More than half of the coastal wetlands in the lower 48 states are located on the Gulf coast, which is also where the majority of coastal wetland loss has been occurring.  About 40% of these are in Louisiana. (NOAA) There is an important link between the healthy coastal marshes, their ecological role in serving as a nursery for invertebrates and small fish, and the larger fisheries and their health—which in turn, have a big impact on both the economy and well-being of people along the Gulf coast. In a healthy coastal marsh, the wetland soils and vegetation protect the land from storm surge, reduce flooding and improve water quality in the surrounding watershed. In a coastal marsh that has been contaminated by oil, the vegetation dies and the soil no longer has the ability to hold its position; it becomes more likely to erode during storms and even day-to-day tidal activity. Coastal wetlands are disappearing at an alarming rate, becoming open ocean.

One would think that cleaning up the oil during the response to the disaster would have solved the problem of contaminated marshes. But it doesn’t work that way. The vulnerable wetlands were threatened by the clean-up response methods intended to save them. The tools used to prevent oil from contaminating shorelands, including booms, got stuck in the wetlands.  Other techniques used to remove the oil disturbed and killed vegetation and other living things. Oily mats smothered mudflats and sand removal disturbed the beach habitat. These unintended impacts have been monitored and a number of contaminated marsh studies will help the response teams to evaluate these impacts and clean-up methods. For more information, see this Status Update: Natural Resource Damage Assessment (NOAA, April 2012).

Related blogs:

Gulf Restoration Network (includes photo slide show): Bird’s Eye View: An Earth Day Reflection In Photos Of The Last 2 Years Of The BP Drilling Disaster

Huffington Post blogs and videos of Gulf Oil Spill

Response & Restoration (NOAA) blog

8 Gulf coast restoration projects announced

Environmental Defense Fund blog: ASFPM Agrees: Some Gulf oil spill fines should go to Gulf restoration (Feb. 2012)

For background information on the impact of the oil spill on wetlands and related media over the past two years, visit ASWM’s Gulf Oil Spill Impact on Wetlands page I put together.

Wetlands as Classrooms

My 16-year old brother is President of his high school class.  He thinks it’s fairly common when his science class goes on a field trip or takes place outside. His high school has a Water Quality Monitoring Team, a Climate Action Club and an environmental outing club.

Middle and high schools around the country have similar clubs and others have adopted a local wetland for class projects.  This time of year, there’s a surge of news stories about school programs that make use of local wetlands for class projects with students K-12 throughout the U.S. Even while facing budgetary constraints, schools are showing an interest in teaching kids about the environment. The National Wildlife Federation’s Eco-School program offers ways for schools to “green” their curriculum. But what does a “wetland classroom” look like? It would make sense that they would vary because wetlands are diverse.  For example, here’s a “school wetland” in North Carolina, not far from the Great Dismal Swamp: http://library.thinkquest.org/J003192F/our.htm

Wetlands and streams are valuable teaching tools for teachers in elementary, middle and high schools. The concept of “wetlands as classrooms” has broadened to include student-led wetland restoration projects, which have received some press coverage over the past few years.  For example, the Hardy Middle School in Washington, D.C. is creating a wetlands classroom, and a new environmental outdoor classroom has been created in New York. At the Maumelle Middle School in Arkansas, 7th graders are learning about how wetlands “saved the school” during floods and how to test the water chemistry.

In addition to school-based programs, there are a number of wetland organizations that provide a “wetland classroom” experience to school children. For example the Jug Bay Wetlands Sanctuary, operated by the Anne Arundel County Department of Recreation and Parks in Maryland, offers activities led by staff naturalists for kids (K-12) as well as college students. Students learn about species diversity, classification, impacts of wetlands on water quality, plant and animal adaptations, ecology, stream morphology and climate change.

In other communities, a wetlands reserve such as the Heckrodt Wetland Reserve in Wisconsin has programs geared for educating kids. See also Exploration, education by the estuary: http://theworldlink.com/sports/outdoors/article_24975834-e621-11e0-a951-001cc4c002e0.html

In addition, science teachers at some schools have incorporated the ‘wetlands as classrooms’ concept into their curriculum.  In particular, one organization created a program called Project WET (Water Education for Teachers). Right now, teachers are excited because Project WET 2.0 curriculum software has recently been released.

Project WET is a nonprofit water education program and publisher. It “promotes awareness, appreciation, knowledge and stewardship of water resources through the dissemination of classroom-ready teaching aids and the establishment of internationally sponsored Project WET programs.” The program has an international reach and has been applied in schools throughout the U.S. Watch a video about Project WET here. Learn about what teachers are doing for Project WET in Arizona or Project WET in Georgia.  If you’re on Facebook, check out Maine Project WET’s page. The program is active inWisconsinMichigan, —well, all 50 states and the District of Columbia. For more about Project WET in the U.S., visit: http://projectwet.org/where-we-are/usa-project-wet/

There has also been some recent press about the 7th grade class in Illinois for their wetland-based class project. Mrs. Fran Wachter’s seventh grade class at Creal Springs School won the national middle school grand prize in Disney’s Planet Challenge, an environmental and science competition for 3rd-8th grade classrooms. The competition expanded this year to include middle school grades 6-8.  To read full article, click here. To view their winning video, Wetland Warriors: Restoring Health to Our Wetlands, click here.

Throughout the year, I get updates from Tom Biebighauser, U.S. Forest Service, who maintains a photo album of wetland restoration projects and some of these projects have involved students from schools in Kentucky, Tennessee and West Virginia. Tom also works with the Center for Wetlands and Stream Restoration in Kentucky; the Center provides training for educators. They have a list of wetland classrooms and school-created wetlands along with other training resources on their website.

In other instances, students have opportunities to help with a larger wetland restoration project run by a state park or other organization, like the one in California last May:Pitching in: Students part of wetlands restoration project.

Environment Concern also maintains a list of school-based wetland projects, mostly in the Mid-Atlantic region, with brief “success stories” for each school:http://www.wetland.org/education_success0708.htm

Mid-Atlantic Environmental Education – Schools in the News

Need ideas for an environmental project to get students interested in ecology, energy conservation and saving the Earth? The EPA Region 3 Environmental Education Program‘s ‘Schools in the News’ website offers press articles of successful environmental projects undertaken by students in mid-Atlantic region schools that are making news. Visit http://www.epa.gov/region03/ee/school_news.htm to learn more.

If you have news or links to information  about “wetlands as classrooms,” please let us know so we can feature other schools and similar programs on our I am an Educatorwebpage.