Category Archives: Beaches & Coasts

Climate Change, Wetlands & Mitigation: A Workshop at Stetson University

Last week I traveled to St. Petersburg, Florida for the first time and walked along the beach in the dark. Moonlight sparkled on the waves, which I couldn’t see because it was pitch-black. The strange sound of chirping birds at my feet caught me off guard because I couldn’t see them; I spun around shining the Assistive Light app on my smartphone to light my path through the dark sand.

IMG_0037

IMG_0048

Ed Thomas spoke about climate change adaptation and flood mitigation in a wetlands context

The Environmental Law Institute partnered with Stetson University College of Law to hold a workshop on the legal and scientific responses to a Supreme Court case known as Koontz. Nearly 70 people attended the workshop. For a local radio coverage of the workshop, click here.  I posted live Tweets for @ELI_Wetlands throughout the workshop, while the speakers, including renown wetlands ecologist, Dr. William Mitsch, Director of the Everglades Wetlands Research Park in Florida, and Ed Thomas, President of the National Hazard Mitigation Association, led the discussion. Royal Gardner, a professor of environmental law at Stetson and author of the book, Lawyers, Swamps and Money, framed the issues. (I’m reading his book now, thanks to Ed!) A series of panel discussions rounded out the day, ending with a pool-side reception, where the conversation about wetlands continued. It was a lively discussion enriched by student and audience participation during the small group break-out sessions. In my group, a number of participants discussed the NGO perspective of wetlands implications of the Koontz case. For more information about the Koontz case, see this SCOTUS blog post. (Supreme Court blog)

IMG_0039  IMG_0053

IMG_0051

Healthy Waters Coalition – What’s on Our Minds, In Our Hearts

At my Healthy Waters Coalition meeting tonight, where we discussed the value of accurate, balanced information about oil spill prevention, I accidentally spilled pink lemonade across the agenda.  (From now on, the incident will be remembered as the “pink spill,” and it can be added to a long list of funny things I have done while leading coalition meetings.) I began to think about what’s really motivating our efforts to inform and educate Sebago Lakes Region citizens and local businesses about watershed issues.

We are a water-based economy here in this part of southern Maine. Boat rentals and recreation-based businesses, real estate and restaurants, florists and landscaping contractors, summer camps for children and accommodations (think: Inn by the Pond), not to mention waterfront property in towns–and property taxes paid to Towns–all bring in millions of dollars in annual revenue for the Sebago Lakes Region. The State of Maine tracks the annual revenue for freshwater fishing and accommodations for several Lakes Region towns. Wetlands are valued for their ecological services, too, and that translates to dollars. Real dollars. Wetlands attenuate flooding and aid in filtering waters to provide good water quality in our groundwater, which produces the drinking water for those who have private wells.  All of the headwater streams (94-100% of streams) in the region are located in Source Water Protection Areas (SPAs), meaning that they directly feed into a public drinking water system. In our region, that system is Sebago Lake, which is so clean, it’s exempt from the federal filtration requirement, an expensive option if ever it were to become necessary for the Portland Water District to put in place.

I want to reach out to other groups engaged in an open dialogue about the possible transportation of oil sands through New England and the importance of protecting our local watersheds, local economy–as the two are interconnected.  While the HWC already has members in 8 Lakes Region towns, representatives from local government boards and committees, watershed organizations, local businesses and other interests, such as Saint Joseph’s College, and we have partnered with some fantastic environmental and conservation-oriented nonprofit organizations already, I’d like to connect the Healthy Waters Coalition with a broader network.  I’m interested in connecting with folks at ConservAmerica, town and city revitalization committees, regional Chambers of Commerce, and the business community. We have so much invested in our waters. While pondering this, I scribbled some thoughts and turned it into this info-graphic (below). I like how it came out. Let me know what you think.

HWC_wordle3

The State(s) of Sea Level Rise Science

Peaks Island, Maine

Peaks Island, Maine

In early April, I read an issue of a Peaks Island, Maine newspaper. On the front page, a story’s headline caught my eye:  “Sea level rise not caused by climate change, scientists confirm.” At first I assumed it was an April Fool’s joke, but the date was not April 1st. Then I got upset. I read. It seems that the journalist had (mis)interpreted a report on sea levels in Casco Bay that affirmed the sea level has risen for much longer than most people have known about global climate change. In fact, the State of Maine has over 100 years worth of sea level rise data because the City of Portland has tracked sea level in Portland harbor since 1901. That’s valuable data. The University of Southern Maine has conducted a series of studies on sea level rise, sustainability and the economics involved with planning for adaptation. According to the Environmental Finance Center at the Muskie School (USM), “at least 100 coastal New England towns will be impacted by sea level rise and increased storm surge from climate change.” Read about their COAST and Climate Ready Estuary projects here.

The State of Maine published its climate change action plan in 2004. It identified sea level rise adaptation planning as a necessity. In particular, the Maine Geological Survey conducted several pilot projects that assessed coastal wetland migration. The state’s coastal zoning laws and management practices changed several years ago to reflect sea level rise. Read the 2010 report, “People and Nature: Adapting to a Changing Climate, Charting Maine’s Course.” A great list of collaborators contributed to the development of “People and Nature,” including Natural Resources Council of Maine, several state agencies, several cities and Maine Coast Heritage Trust. It’s hard to find on the state’s website because the State Planning Office’s website was moved and merged with those of other departments.

Meanwhile, adaptation planning has moved to the forefront of climate change science in recent years. Sea level rise scientists at NASA, USGS and other agencies engaged in an online chat session about the state of the science for sea level rise and adaptation planning in early April 2013. (You can listen to the discussion after-the-fact.) What I found interesting is that salt marsh ecology and wetlands play such a vital role in our understanding of sea level rise and its implications for coastal systems. Over the past 6 years, I’ve done some research on sea level rise and learned of sea level rise tools and adaptation planning efforts underway all over the country. A hotspot for sea level rise research is the East coast of the United States, where sea level rise is occurring at a faster rate between Cape Cod and the coast of North Carolina—faster than anywhere else in the world.

Leah Stetson photo

Leah Stetson photo

Several other states have begun to plan for sea level rise. Click on the links below to learn more about what states are doing about sea level rise and adapting natural resource management strategies for climate change. In most cases, it’s a collaborative effort.

MA: Mass Fish & Game Adaptation Planning       MA sea level rise planning maps
MA: Climate Change Adaptation Advisory Committee
NY: New York Sea Level Rise Planning        NY Sea Level Rise Task Force Report 2010
CT: Connecticut Climate Change Adaptation Reports
RI: Rhode Island Coastal Resources Management Council Sea Level Rise Planning
NJ: New Jersey Coastal Management Program Sea Level Rise Planning
NJ: Sea Level Rise in New Jersey, New Jersey Geological Survey Report, 1998
NJ, DE, PA, NY: Delaware River Basin Commission Climate Change Hydrology Report, 2013
DE: Delaware Sea Level Rise Planning & Adaptation
MD: Living Shorelines Program (Chesapeake Bay Trust)
MD: A Sea Level Response Strategy for Maryland (2000)
VA: Planning for Sea Level Rise, Virginia Institute for Marine Science
VA Sea Level Rise Maps
VA: Sea Level Rise Planning at Local Government Level in Virginia
VA: Government Plan for Development of Land Vulnerable to Sea Level Rise
GA: University of Georgia, Sea Grant – Sea Level Rise Planning & Research
FL: Florida’s Resilient Coasts: State Policy Framework for Adaptation (PDF)
FL: Multidisciplinary Review of Current Sea Level Rise Research in Florida  (University of Florida)
MS & AL: Mississippi and Alabama Sea Grant Consortium – Resilience in Coastal Communities
Gulf of Mexico States: Climate Community of Practice: Sea Level Rise Planning
LA: Coastal Protection & Restoration – Recommendations for Sea Level Rise Planning (Includes Louisiana’s 2012 Coastal Master Plan)
CA: California’s Climate Change Adaptation Plan for Water Resources (2012)
CA: State Resources on Sea Level Rise and Adaptation Planning
CA: Adapting to Sea Level Rise Report (2012)
CA, OR, WA: Sea-Level Rise for the Coasts of California, Oregon and Washington (2012)
OR: A Strategy for Adapting to Impacts of Climate Change on the Oregon Coast (2009)
OR: LiDAR Sea Level Rise Research (NOAA Digital Services)
WA: Addressing Sea Level Rise in Shoreline Master Programs (Guidance) (2007)
WA: Sea Level Rise Assessment: Impacts of Climate Change on the Coast (2007)
AK: Alaska’s Melting Permafrost and Melting Sea Ice (national research)
AK: Climate change impacts in Alaska (EPA)
NC: North Carolina Coastal Federation – Sea Level Rise

A note about North Carolina: Several state agencies, including the Departments of Environment & Natural Resources, Transportation and Commerce, all identified threats and risks from sea level rise in 2010. At the time, the state’s Governor signed a letter confirming this. Two years later, North Carolina’s State Senate passed a law that banned sea level rise adaptation planning based on the current science. The House of Representatives rejected the bill, but a compromised version of the bill called for a new study on sea level rise for North Carolina and a ban on exponential sea level rise predictions in modeling. Read this Scientific American article on NC and sea level rise, and the 2012 USGS study that found increasing sea level rise impacts on the coast between Cape Cod and the Carolinas. See “More unwanted national attention for North Carolina on sea level rise” (2013).

If you’re interested in a good summary of sea level rise policy in states, see this 2012 legislative report by Kristin Miller, et. al. (Connecticut General Assembly). It includes an analysis of sea level rise related policy in ten states (Louisiana, Florida, Maryland, Massachusetts, New Jersey, New York, North Carolina, Rhode Island, South Carolina and Virginia.)

Update: Check out Nickolay Lamm’s Sea Level Rise Images Depict What U.S. Cities Could Look Like In Future (PHOTOS) – click here. 

The Love Lives of Horseshoe Crabs, Not Cannibals

Amidst the studies on Hurricane Sandy’s impacts on coastal communities—which affected the lives of people, most notably—some recent studies have examined the impacts on the lives of a strange ancient creature: horseshoe crabs. Distant relatives of scorpions and spiders, horseshoe crabs are not true crabs, or crustaceans. They’ve been around for over 1 billion years and lived alongside dinosaurs. See “The Life and Times of the Earliest Horseshoe Crabs,” (Rudkin, Royal Ontario Museum). Unlike a scorpion, crab or spider, horseshoe crabs don’t bite, sting or pinch. And unlike cannibalistic crustaceans, adult horseshoe crabs do not congregate (except to spawn seasonally), which is possibly a way to avoid large crabs attacking smaller horseshoe crabs—thus, avoiding cannibalistic behavior as a species. (Sekiguchi, Shuster, Jr., 1999) Their anatomy is interesting, as illustrated below.

Each spring, horseshoe crabs spawn along creek-mouth beaches and shoals. They like sandy beaches. Naturally, these coastal areas, rich in wetlands, peat bogs and saltwater marsh, were hit hard by Hurricane Sandy. What’s more, sea level rise has eroded certain coastal beaches where horseshoe crabs used to spawn, decreasing the habitat suitable for spawning. See Sea Level Rise and the Significance of Marginal Beaches for Horseshoe Crab Spawning (Botton and Loveland, 2011).

In the Delaware Bay, for example, the American Littoral Society, along with the Wetlands Institute, the New Jersey Department of Environment Protection and New Jersey Audubon, have assessed the impacts of Hurricane Sandy on horseshoe crab populations in the Bay. Watch this video of horseshoe crab spawning in Delaware. Read Hurricane Sandy Race To Restore Horseshoe Crab Spawning Grounds (March 2013). Videos depict horseshoe crabs spawning, swimming upside down and righting themselves.

In a joint report by the Wetlands Institute, NJ Audubon Society and NJ Division of Fish & Wildlife (“Damage from Superstorm Sandy to Horseshoe Crab Breeding and Shorebird Stopover Habitat on Delaware Bay,” December 2012), wetlands did well overall, despite some “wash over” during storm surges of Hurricane Sandy, according to Lenore Tedesco, Ph.D. Director of Research at the Wetlands Institute. Yet a major finding was a 70% decrease in suitable breeding habitat for horseshoe crabs. In addition, there was about the same amount of increase in unsuitable habitat for horseshoe crab spawning. Specifically, the scientists classified the types of habitat into five categories:

  1. Optimal: undisturbed sand beach;
  2. Suitable: sand beach with only small areas of peat and/or backed by development
  3. Less Suitable: exposed peat in lower/middle intertidal zone;
    sand present in upper intertidal;
  4. Avoided habitat:  exposed peat or active salt marsh fringing the shoreline;
    no sand present
  5. Disturbed due to beach fill, riprap or bulkheading.
    (Niles, Tedesco, Sellers, et. al. 2012)

In areas where the habitat is less suitable, with exposed peat, there is less sand for the horseshoe crabs to lay their eggs. The full report includes recommendations for habitat restoration. For more information about post-Sandy restoration recommendations, visit the Wetlands Institute’s website here.

Many years ago, I learned that horseshoe crabs (Limulus polyphemus) lay at the heart of some medical advances in immunology research. Apparently, horseshoe crab blood and immunology can serve scientists with a model to develop treatments for patients with HIV, AIDS or other immune deficiency disorders. Its “blue blood” contains Limulus Amebocyte Lysate, which allows medical researchers to detect bacterial toxins. In ecological projects, the spawning and genetic diversity of horseshoe crabs is the focus, or the relationship between horseshoe crabs and fisheries. For an overview of various research projects on horseshoe crabs happening in 18 states and two countries, see these project summaries. There’s some fascinating research underway.

The Wetland Institute has a number of publications on its website related to horseshoe crab research and conservation. There’s also an “Adopt a Horseshoe Crab” program and horseshoe crab census data available from 1999-2009. In May, the Institute holds festival activities, including teaching tank/aquarium talks on saltmarsh ecology, shorebirds and horseshoe crabs. For more information about the Horseshoe Crab Festival in May,click here.

More videos:

See horseshoe crab counting (Washington Post video, June 2012)
NATURE program on horseshoe crabs (PBS, 2008)
Horseshoe crab documentary (Nick Baker, Science Channel)

For more on horseshoe crab biology and ecology, see this National Park Service webpage and materials developed by the Mid-Atlantic Sea Grant and NOAA joint programs on horseshoe crab research. Finally, check outhttp://horseshoecrab.org/ which houses an online warehouse of information on the biology, conservation and research of horseshoe crabs.

Surging Seas and Hybrid Storms

NASA officials nicknamed Hurricane Sandy “Bride of Frankenstorm.” Strange behavior patterns—hitting the northeast as a mix of nor’easter blizzard and hurricane conditions created a powerful hybrid storm that affected many communities. In Maine, we felt the storm’s most severe impacts the night of the full moon on October 29th. Footage of storm surge on the news looked like the forceful wave action in “Thunder Hole” at Acadia National Park. Throughout New England, New York and New Jersey, many people were still without power when the nor’easter hit this week. Hurricane Sandy’s unusual hybrid classification and other factors set a precedent. Coupled with the tides of the full moon, storm surge was more intense, causing more flooding to occur. Are we likely to see and experience powerful hybrid storms like this in the future? What tools are available to predict storm surge?

Forecasters called Hurricane Sandy a “perfect storm.” View photos of the storm as seen from space. Last winter Strange Wetlands reported on the Red Cross/Red Crescent’sinvolvement in the IPCC report on the link between extreme weather disasters and climate change. This week Climate Central’s Surging Seas tool demonstrated how effects of climate change, including sea level rise and storm surge, made Hurricane Sandy worsethan it might have been otherwise.

Federal agencies such as the U.S. Army Corps of Engineers and NASA have been measuring storm surge for many decades, since the 1960s (see above)—long before most people started talking about sea level rise. According to a NASA presentation on An Analysis of Storm Surge Attenuation using USGS, FEMA and NASA data, there is historical data to support the claim that wetlands significantly reduce storm surge. Wetland scientists in the 1960s asserted that 2.7 miles of wetlands reduced storm surge by 1 foot. More recent data from Hurricane Rita was used to assess the storm impacts to wetlands (such as causing wetland loss) as well as wetlands’ role in lessening the effects of storm surge. Therefore wetland losses along the Gulf of Mexico coastline in Louisiana, for instance, and along other areas of coastline on the eastern seaboard, intensified the amount of storm surge during recent hurricanes, such as Hurricane Irene and Sandy. (Fitzpatrick, et. al. 2008) Also see Storm Surge Reduction by Wetlands.

While SLAMM—Sea Level Affecting Marsh Model—may be familiar to you, a tool used in analyzing sea level rise, especially with respect to wetlands, have you heard of SLOSH? Sea, Lake and Overland Surges from Hurricanes, (SLOSH) is a tool used to analyze storm surgeHurricane Sandy’s storm surge was mapped before it made landfall. The SLOSH model was applied to Hurricane Sandy prior to Oct. 29th and it analyzed surges of various levels (2 feet, 3 feet, 4 feet, etc.) At most locations, meteorologists predicted unprecedented levels of surgeusing this tool and other analyses. Tools like SLOSH are only as good as the available data. Future budget cuts threaten data collection tools, such as ocean bouysOther storm surge analysis tools were used to predict Sandy’s surge levels and ultimately, citizens were evacuated in areas where the path of the storm surge was predicted on the maps using those models.

Some useful fact sheets and further reading on the importance of wetlands in preventing storm surge are linked below:

Storm surge & wetlands in Louisiana (NWF fact sheet)
Mitigating Storm Surge with Vegetation & Wetlands (Army Corps of Engineers, 2007)
Analysis of Storm Surge Attenuation & Wetlands (NASA) (2008)
The potential of wetlands in reducing storm surge (Ocean Engineering, 2010)
Hurricane Sandy Geospatial Resources (NOAA Digital Coast, 2012)

Pond Scum: The Good, the Bad, and the Sludgy

Globs of algae the size of human heads floated around like something out of a B-movie on MST3K. It was unnerving to bump into one of them. I can handle swimming with eels…but I find it creepy to swim with severed head-shaped algae clusters. When I arrived at my little local lakeside beach in southern Maine, I thought I was lucky because no one else was there in 90-degree heat. Then I realized the beach was vacant because of the algal bloom. An algal bloom is a concentration of cyanobacteria. Strange Wetlands covered types of algae blooms, including blue green algae, in an earlier post (2010).

In the Great Lakes region this summer, some communities are seeing algal blooms, including the Eastern parts of Lake Erie. Algal blooms turn the water a bright scummy green. Some of the vegetation washes ashore in clumps, deterring beach goers but not always causing beach closings.  However, NOAA has recently issued a prediction that western Lake Erie should see a lesser algal bloom this summer. This is good news.NOAA, partners predict mild harmful algal blooms for western Lake Erie this year. A presentation will be held on algal blooms and the “Lake Erie Dead Zone” by an aquatic biologist in Cleveland Heights on July 25th.  For more information about the Lake Erie Dead Zone, visit EPA’s webpage. But this year’s bloom on Lake Erie is likely to be only one tenth the size of the bloom that occurred last year.

Last year, Lake Erie’s harmful algal bloom was visible from space (2011). In fact last year’s algae blooms in the Great Lakes were touted as the ‘worst since the 1960s,’ something akin to the comics of “The Creature from the Black Lagoon.” The Natural Resources Defense Council presented analysis of Ohio beach closings and algal bloomsand on New York beaches for Lake Ontario and Lake Erie with monitoring data collected in 2011. Full report here.

What’s the issue this summer? Not all algae, or “pond scum,” is created equal. Some amount of algae is a normal part of the ecosystem but too much of the wrong types are harmful. A Great Lakes native algae called Spirogyra is thriving on the conditions caused by invasive zebra and quagga mussels. The result is a sludge-like mat of green algae that washes up on beaches along Lake Michigan and other lakes. Another green alga, Cladophora, increased because of the zebra mussels, and both types of algae wash ashore in thick mats, which rot, stink and harbor E. Coli, Salmonella and other pathogens. The stench from the beach muck is comparable to manure. See video, “All Washed Up: Lake Michigan’s Algae Challenge.” For a fact sheet on Harmful Algae Blooms & Muck: What’s the Difference (Michigan Sea Grant), click here. For more about the relationship between algae and zebra mussels, see Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (report, 2002).

Another serious factor this summer is drought, which is occurring in a large part of the country. For instance in Wisconsin, the hot weather has caused harmful blue green algae blooms in Lake Winnebago and Tainter/Menomin lakes, where there is a history of blooms, but the harmful algae is also showing up in lakes where it previously did not occur. They are facing a similar problem to that in Lake Michigan with the zebra mussels and Cladophora, warned to be harmful to boaters and swimmers. The US Fish & Wildlife Service has found dead waterfowl, most likely killed by botulism, in Wisconsin lakes this year. For a past FWS report on waterfowl and botulism in the Wisconsin lakes, click here.

Algal blooms are probably not at the top of the list of issues concerning those keeping an eye on the Farm Bill developments—but this is one of the reasons why the Farm Bill’s Conservation Title is so crucial to the protection of wetlands and water resources—including the Great Lakes. See Farm Bill Conservation Programs Are ‘Essential for Great Lakes Restoration’

The State of the Gulf Coast Wetlands—Two Years After the B.P. Oil Spill

Since the Deepwater Horizon spill of 2010, dolphin strandings have occurred at an unprecedented high level—over 500 stranded dolphins—one indicator that there is still a major problem in the Gulf (NOAA). Another strong indicator is the accelerated rate of coastal wetland loss in the Gulf as direct result from the impacts of the spill. Prior to the 2010 spill, the state of Louisiana already faced significant coastal wetland loss—about the area equivalent to a football field’s worth of wetlands every hour. Over 1,000 miles of coastal wetlands were contaminated by the oil spill, and despite restoration efforts, the rate of coastal wetland loss is now made more complex by the spill and clean-up process. Efforts to clean up the oil in the marshes, in some areas, depending on the extent of the contamination, have caused further damage to the wetlands. (NWF) A recent report by the National Wildlife Federation, “A Degraded Gulf of Mexico: Wildlife and Wetlands—Two Years into the Gulf OilDisaster” assesses the impacts to sea turtles, dolphins, pelicans, other wildlife and coastal wetlands affected by the B.P. oil spill.

NOAA announced this month that eight Gulf coast restoration projects will begin this year with $60 million earmarked for the work to create marshes, improve coastal dune habitat, restore oyster beds and reefs, and other projects related to the boat industry.  The first phase of the projects will take place in Louisiana, Alabama, Mississippi and Florida. There is more information about these restoration projects atwww.gulfspillrestoration.noaa.gov and www.doi.gov/deepwaterhorizon

Specific project fact sheets on each restoration project involved in this first phase of the Gulf Coast Restoration, called “Early Restoration,” an effort to get the natural resources back to the state prior to the spill, are available on NOAA’s website.  To learn more about the Gulf Coast Early Restoration efforts underway, go to:http://www.gulfspill
restoration.noaa.gov/
restoration/early-restoration/

As part of the response to the spill two years ago, a number of organizations and agencies have worked hard to address the critical needs of wildlife that depended on the coastal wetlands that were contaminated or destroyed by the spill. For example, a shorebird habitat enhancement project provided alternative habitat in Mississippi for waterfowl. A sea turtle project improved nesting and hatching on the Texas coast.

The Gulf coast’s diverse shoreline includes mangroves, cypress swamps, fresh and saltwater marshes and mudflats. What’s really at stake here? More than half of the coastal wetlands in the lower 48 states are located on the Gulf coast, which is also where the majority of coastal wetland loss has been occurring.  About 40% of these are in Louisiana. (NOAA) There is an important link between the healthy coastal marshes, their ecological role in serving as a nursery for invertebrates and small fish, and the larger fisheries and their health—which in turn, have a big impact on both the economy and well-being of people along the Gulf coast. In a healthy coastal marsh, the wetland soils and vegetation protect the land from storm surge, reduce flooding and improve water quality in the surrounding watershed. In a coastal marsh that has been contaminated by oil, the vegetation dies and the soil no longer has the ability to hold its position; it becomes more likely to erode during storms and even day-to-day tidal activity. Coastal wetlands are disappearing at an alarming rate, becoming open ocean.

One would think that cleaning up the oil during the response to the disaster would have solved the problem of contaminated marshes. But it doesn’t work that way. The vulnerable wetlands were threatened by the clean-up response methods intended to save them. The tools used to prevent oil from contaminating shorelands, including booms, got stuck in the wetlands.  Other techniques used to remove the oil disturbed and killed vegetation and other living things. Oily mats smothered mudflats and sand removal disturbed the beach habitat. These unintended impacts have been monitored and a number of contaminated marsh studies will help the response teams to evaluate these impacts and clean-up methods. For more information, see this Status Update: Natural Resource Damage Assessment (NOAA, April 2012).

Related blogs:

Gulf Restoration Network (includes photo slide show): Bird’s Eye View: An Earth Day Reflection In Photos Of The Last 2 Years Of The BP Drilling Disaster

Huffington Post blogs and videos of Gulf Oil Spill

Response & Restoration (NOAA) blog

8 Gulf coast restoration projects announced

Environmental Defense Fund blog: ASFPM Agrees: Some Gulf oil spill fines should go to Gulf restoration (Feb. 2012)

For background information on the impact of the oil spill on wetlands and related media over the past two years, visit ASWM’s Gulf Oil Spill Impact on Wetlands page I put together.